摘要
文章研究了单部件可修系统的最优维修更换问题,假定系统不能“修复如新”,分别以(1)系统的故障次数N;(2)系统的工作时间T;(3)二元函数(N,T)为策略,利用几何过程确定最优的策略,使得系统经长期运行单位时间内平均停机时间达到最少,并求出了系统经长期运行单位时间内平均停机时间的明显表达式,对故障系统的维修和更换具有参考价值和指导意义.
This paper considers the optimal maintenance and replacement problem for the repairable system of one unit,assume that the system after repair is not "as good as new", we consider following placement policies. (1)the repair number N ; (2) the working age T ; (3)the two variable (N , T ). by using the geometric process, The problem is to determine the optimal replacement policy such that the long -- run expected downtime per unit time is minimal. Also,the explicit expression of the long -- run expected downtime per unit time can be found. It is used as reference to the failure system maintenance and replacement.
出处
《河南机电高等专科学校学报》
CAS
2006年第4期1-2,15,共3页
Journal of Henan Mechanical and Electrical Engineering College
基金
河南省自然科学基金项目(0611054400)
河南省教育厅基础研究项目(2006120002)
关键词
可修系统
平均停机时间
几何过程
更新报酬定理
repairable system
expected downtime
geometric process
renewal reward theorem