摘要
Minimal surface is extensively employed in many areas. In this paper, we propose a control mesh representation of a class of minimal surfaces, called generalized helicoid minimal surfaces, which contain the right helicoid and catenoid as special examples. We firstly construct the Bézier-like basis called AHT Bézier basis in the space spanned by {1, t, sint, cost, sinht, cosht}, t∈[0,α], α∈[0,5π/2]. Then we propose the control mesh representation of the generalized helicoid using the AHT Bézier basis. This kind of representation enables generating the minimal surfaces using the de Casteljau-like algorithm in CAD/CAGD mod- elling systems.
Minimal surface is extensively employed in many areas. In this paper, we propose a control mesh representation of a class of minimal surfaces, called generalized helicoid minimal surfaces, which contain the right helicoid and catenoid as special examples. We firstly construct the Bézier-like basis called AHT Bézier basis in the space spanned by { 1, t, sint, cost, sinht, cosht}, t∈[0,α], α∈ [0,5π/2]. Then we propose the control mesh representation of the generalized helicoid using the AHT Bézier basis. This kind of representation enables generating the minimal surfaces using the de Casteljau-like algorithm in CAD/CAGD modelling systems.
基金
Project supported by the National Natural Science Foundation of China (No. 60473130) and the National Basic Research Program (973) of China (No. 2004CB318000)