期刊文献+

一种针对遥感图像的自动ROI编码算法 被引量:1

An Automatic ROI Coding Algorithm for Remote Sensing Images
下载PDF
导出
摘要 感兴趣区域(ROI)编码技术具有在不丢失重要信息的同时又有效地压缩了数据量的特点,非常适用于遥感图像的压缩.但现有的ROI编码算法在编码前需人为定义ROI,因而在用户无法进行人工干预的情况下其使用受限.针对此问题,从遥感图像的特点入手,提出了一种自动ROI编码算法.该算法基于JPEG2000标准框架,首先根据用户需求进行了ROI自动检测,并通过与目标形状最为接近的最小外接矩形的使用将ROI检测算法与ROI编码算法有效地结合在一起,最后,结合检测结果的特点优化了编码算法,实现了对遥感图像的自动ROI编码.实验结果验证了此算法的有效性. Region of interest (ROI) coding technique could effectively compress the image data while the important information could aim be saved well and it' s very adaptive to the remote sensing image compression. The ROI needs to be defined in advance in the existing ROI coding algorithms. So the application of the ROI coding algorithm is restricted when the ROI of remote sensing images couldn't be defined by the users in some conditions. To solve this problem,an automatic ROI coding algorithm based on the characteristics of the remote sensing images is proposed. According to the application demands, the ROI could be detected automatically with higher accuracy firstly. Then, by the using of the minimum enclosing rectangle which is close to the shape of the target, the ROI automatic detection algorithm is corn bined with the ROI coding algorithm. At last, the ROI coding algorithm is a ed results based on the J PEG2000 standard ing images and has greater practicality. The This algorithm can automatical algorithm efficiency is tested w so improved with the detect y compress the remote sens th the simulation results.
出处 《光电技术应用》 2006年第4期64-70,共7页 Electro-Optic Technology Application
基金 国家自然科学基金资助项目(60472048) 黑龙江省自然基金重点资助项目(ZJG04-0701)
关键词 ROI自动检测 ROI编码 JPEG2000标准 最小外接矩形 图像分割 ROI automatic detection ROI coding JPEG2000 standard minimum enclosing rectangle segmentation
  • 相关文献

参考文献8

  • 1牛蕾 ,倪林 ,MIAO Yuan .基于ROI的压缩域多谱段遥感图像的检索[J].中国图象图形学报,2005,10(10):1212-1217. 被引量:6
  • 2Boliek M,Chistopoulos C,Majani E.JPEG2000 Part Ⅰ Final Committee Draft Version 1.0.ISO/IEC JTC 1/SC 29/WG 1 N1646R[Z],2000.
  • 3Itti L,Koch C,Niebur E.A model of Saliency-based Visual Attention for Rapid Scene Analysis[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,1998,20(11):1254-1259.
  • 4Itti L,Koch C.Computational Modeling of Visual Attention[J].Nature Reviews Neuroscience,2001,2(3):194-203.
  • 5Kadir T,Brady M.Scaliency,Scale and Image Description[J].International Journal of Computer Vision,2001,45 (2):83-105.
  • 6张鹏,王润生.基于视点转移和视区追踪的图像显著区域检测[J].软件学报,2004,15(6):891-898. 被引量:53
  • 7Taubman D.High Performance Scalable Image Compression with EBCOT[J].IEEE Trans on Image Processing,2000,9(7):1158-1170.
  • 8M.Boliek,E.Majani.JPEG2000 Part Ⅱ Final Committee Draft Version 1.0.ISO/IEC JTC 1/SC 29/WG 1 N1646R[Z],2000.

二级参考文献19

  • 1Bourque E, Dudek G, Ciaravola P. Robotic sightseeing: A method for automatically creating virtual environments. In: Giralt G, ed.Proc. of the IEEE Conf. on Robotics and Automation. Leuven: IEEE Press, 1998. 3186~3191.
  • 2Kadir T, Brady M. Saliency, scale and image description. International Journal of Computer Vision, 2001,45(2):83-105.
  • 3Gesu VD, Valenti C, Strinati L. Local operators to detect regions of interest. Pattern Recognition Letters, 1997,18(11-13):1077-1081.
  • 4Wai WYK, Tsotsos JK. Directing attention to onset and offset of image events for eye-head movement control. In: Huang T, ed.Proc. of the Int'l Association for Pattern Recognition Workshop on Visual Behaviors. Seattle: IEEE Press, 1994. 79~84.
  • 5Stentiford FWM. An evolutionary programming approach to the simulation of visual attention. In: Kim JH, ed. Proc. of the IEEE Congress on Evolutionary Computation. Seoul: IEEE Press, 2001. 851-858.
  • 6Itti L, Koch C, Niebur E. A model of saliency-based visual attention for rapid scene analysis. IEEE Trans. on Pattern Analysis and Machine Intelligence, 1998,20(11):1254-1259.
  • 7Itti L, Koch C. Computational modeling of visual attention. Nature Reviews Neuroscience, 2001,2(3):194-230.
  • 8Itti L, Koch C. Feature combination strategies for saliency-based visual attention systems. Journal of Electronic Imaging,2001,10(1):161-169.
  • 9Yee H, Pattanaik SN, Greenberg DP. Spatiotemporal sensitivity and visual attention for efficient rendering of dynamic environments. ACM Trans. on Computer Graphics, 2001,20(1):39-65.
  • 10Boccignone G, Ferraro M, Caelli T. Generalized spatio-chromatic diffusion. IEEE Trans. on Pattern Analysis and Machine Intelligence, 2002,24(10): 1298-1309.

共引文献56

同被引文献11

  • 1魏仲慧,何昕,郝志航.多目标的实时连通性分析方法[J].光学精密工程,1995,3(4):23-26. 被引量:7
  • 2余莉,王润生,韩方剑.多分辨率形态学目标检测[J].计算机辅助设计与图形学学报,2006,18(6):849-853. 被引量:5
  • 3邓家先.基于重要系数提升的遥感图像压缩[J].光学精密工程,2006,14(5):910-916. 被引量:12
  • 4YEH P SH, VENBRUX J, BHATIA P, et al.. A real time high performance data compression technique for space applications[C]. IEEE International Geoscience and Remote Sensing Symposium, Proceedings, 2000 : 612- 614.
  • 5YEH P SH, MOURY G, ARMBRUSTER P, et al.. The CCSDS data compression recommendations: development and status[J]. SPIE, 2002,4790 : 302- 313.
  • 6HEIJMANS H J A M, GOUTSIAS J. Morphology-based perfect reconstruction filter banks[C]. Proceedings of the IEEE SP International Symposium on Time-frequency and Time-Scale Analysis, 1998,101353-356.
  • 7ITTI L, KOCH C, NIEBUR E. A model of saliency-based visual attention for rapid scene analysis[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1998,20( 11 ) : 1254-1259.
  • 8KADIR T, SALIENCY B M. Scale and image description[J]. International Journal of Computer Vision ,2001,45 (2):83-105.
  • 9RICE R F, YEH P S, MII.I.ER W. Algorithm for a very high speed universal noiseless coding module[R]. Pasadena, CA : Jet Propulsion Laboratory, 1991.
  • 10毋立芳,沈兰荪,张晓玲.基于感兴趣区的图象近无损压缩[J].中国图象图形学报(A辑),2001,6(6):528-532. 被引量:9

引证文献1

二级引证文献9

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部