期刊文献+

三维高阶数值流形方法研究 被引量:19

Study of three-dimensional high-order numerical manifold method
下载PDF
导出
摘要 将三维流形单元的位移函数从一阶拓展为二阶,基于最小势能原理建立了有限单元覆盖的高阶流形方法分析格式,详细推导了三维流形单元的刚度矩阵、等效节点荷载列阵以及位移约束矩阵。计算结果表明,提高物理覆盖函数的阶次可有效提高流形方法的计算精度。 The three-dimensional numerical manifold with high-order displacement functions has been developed based on the tetrahedron element meshes. The global equilibrium equations of high-order manifold method are established by minimizing the total potential energy. The stiffness matrix, the loading matrix and displacement resistance matrix are derived and added to the global equations. The example of the cantilever bending under the area loading is calculated by the high-order manifold method and the numerical results agree well with theoretical solutions.
出处 《岩土力学》 EI CAS CSCD 北大核心 2006年第9期1471-1474,共4页 Rock and Soil Mechanics
基金 国家自然科学基金(No.50309010) 国家自然科学基金重点项目(No.50239070) 水资源与水电工程科学国家重点实验室开放基金(No.2003C004) 中科院岩土力学重点实验室开放基金(No.206152152)资助。
关键词 数值流形方法 高阶位移函数 有限覆盖 numerical manifold method high-order function finite covering
  • 相关文献

参考文献8

二级参考文献38

  • 1石根华 裴觉民(译).数值流形方法与非连续变形分析[M].北京:清华大学出版社,1997..
  • 2王书法.[D].中国科学院武汉岩土力学研究所,1999.
  • 3田荣 栾茂田 杨庆.高阶流形方法及应用[J].工程力学,2000,17(1):105-113.
  • 4Shi Gonhua, Goodman R E Two dimensional discontinuous deformation analysis[J]. Int. J. for Num. and Analy. Methods in Geomech., 1987, 9(5): 541-556.
  • 5Shi Genhua. Discontinuous deformation analysis and numerical models of static and dynamic block system[PhD Dissertation][D].Berkeley, USA: Dept. of Civil Engrg., UC, 1989.
  • 6Shi Genhua. Manifold method[A]. In:Salami M R,Banks D ed.Discontinuous Deformation Analysis (DDA) and simulations of Discontinuous Media[C]. Albuquerque,1996, 25-262.
  • 7Chcn G Q, Ohnishi Yuzo, Ito Takahiro. Development of high-order manifold method[J], lnter.J, of Numerical Method in Engrg., 1998,43(6): 685-712.
  • 8Shyu K, Salami M R. Manifold method with four-node isoparametric finite element method[A]. In.. Working Forum on the Manifold Method of Material Analysis[C].Califomia, USA.. [s. n.], 1995, 1:165-182.
  • 9Ohnishi Yuzo, Ohtsu Hiroyasu, Song Jonsheng, et al. High order displacement function of quadrilateral element of Monifold Method[A].In: Proc. of 11^th Japan National Symposium for Rock Mechanics[C].[s.l.]: [s.n.], 2002, 1: C05-C10.
  • 10Aoki S, Kishimoto K, Sakata M. Finite element computation of dynamic stress intensity factor for a rapidly propagating crack using j-integral[J].Computatconal Mechanics, 1987, 2: 54-62.

共引文献50

同被引文献222

引证文献19

二级引证文献91

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部