期刊文献+

电子商务推荐系统中的协同过滤推荐 被引量:54

A Survey of Collaborative Filtering Algorithm Applied in E-commerce Recommender System
下载PDF
导出
摘要 电子商务推荐系统中协同过滤已成为目前应用最广泛、最成功的推荐方法。它利用相似用户购买行为也可能相似的特性进行推荐。介绍了与其他方法比较协同过滤方法的优点,然后说明了一些主要的协同过滤实现方法,指出了还需改进和完善的地方以及未来研究的方向。 In E- commerce recommender system, collaborative filtering technology is the most popular and successful method at present. It supposes similar users may have the same behavior in shopping. In this article, first introduce strong - points of the algorithms comparing with other methods, then describe several main collaborative filtering algorithms, at last, point out several open research problems and directions on the algorithm.
作者 游文 叶水生
出处 《计算机技术与发展》 2006年第9期70-72,共3页 Computer Technology and Development
关键词 电子商务 推荐系统 协同过滤 E- commerce recommender system collaborative filtering algorithm
  • 相关文献

参考文献7

  • 1Ben S J,Konstan J A,Riedl J.E-commerce Recommendation Applications[EB/OL].http://www.grouplens.org/papers/pdf/ECRA.pdf,2002-09-26.
  • 2Breese J S,Heckerman D,Kadie C.Empirical Analysis of Predictive Algorithms for Collaborative Filtering[A].In:Proceedings of the 14th Conference on Uncertainty in Artificial Intelligence[C].Madison,Wisconsin:Morgan Kaufmann,1998.43-52.
  • 3Badrul S,Karypis G,Konstan J,et al.Item-based Collaborative Filtering Recommendation Algorithms[Z].WWW10,2001.
  • 4邓爱林,朱扬勇,施伯乐.基于项目评分预测的协同过滤推荐算法[J].软件学报,2003,14(9):1621-1628. 被引量:558
  • 5Badrul S,Karypis G,Konstan J,et al.Analysis of Recommendation Algorithms for E-commerce[M].New York,USA:ACM Press,2000.106-112.
  • 6赵亮,胡乃静,张守志.个性化推荐算法设计[J].计算机研究与发展,2002,39(8):986-991. 被引量:140
  • 7邓爱林,左子叶,朱扬勇.基于项目聚类的协同过滤推荐算法[J].小型微型计算机系统,2004,25(9):1665-1670. 被引量:147

二级参考文献32

  • 1Brccsc J, Hcchcrman D, Kadic C. Empirical analysis of predictive algorithms for collaborative filtering. In: Proceedings of the 14th Conference on Uncertainty in Artificial Intelligence (UAI'98). 1998.43~52.
  • 2Goldberg D, Nichols D, Oki BM, Terry D. Using collaborative filtering to weave an information tapestry. Communications of the ACM, 1992,35(12):61~70.
  • 3Resnick P, lacovou N, Suchak M, Bergstrom P, Riedl J. Grouplens: An open architecture for collaborative filtering of netnews. In:Proceedings of the ACM CSCW'94 Conference on Computer-Supported Cooperative Work. 1994. 175~186.
  • 4Shardanand U, Mats P. Social information filtering: Algorithms for automating "Word of Mouth". In: Proceedings of the ACM CHI'95 Conference on Human Factors in Computing Systems. 1995. 210~217.
  • 5Hill W, Stead L, Rosenstein M, Furnas G. Recommending and evaluating choices in a virtual community of use. In: Proceedings of the CHI'95. 1995. 194~201.
  • 6Sarwar B, Karypis G, Konstan J, Riedl J. Item-Based collaborative filtering recommendation algorithms. In: Proceedings of the 10th International World Wide Web Conference. 2001. 285~295.
  • 7Chickering D, Hecherman D. Efficient approximations for the marginal likelihood of Bayesian networks with hidden variables.Machine Learning, 1997,29(2/3): 181~212.
  • 8Dempster A, Laird N, Rubin D. Maximum likelihood from incomplete data via the EM algorithm. Journal of the Royal Statistical Society, 1977,B39:1~38.
  • 9Thiesson B, Meek C, Chickering D, Heckerman D. Learning mixture of DAG models. Technical Report, MSR-TR-97-30, Redmond:Microsoft Research, 1997.
  • 10Sarwar B, Karypis G, Konstan J, Riedl J. Analysis of recommendation algorithms for E-commerce. In: ACM Conference on Electronic Commerce. 2000. 158~167.

共引文献757

同被引文献281

引证文献54

二级引证文献452

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部