期刊文献+

基于贝叶斯最小二乘支持向量机的时用水量预测模型 被引量:23

Hourly Water Demand Forecast Model Based on Bayesian Least Squares Support Vector Machine
下载PDF
导出
摘要 为解决传统最小二乘支持向量机采用交叉验证确定模型参数耗时长的问题,提出利用贝叶斯置信框架推断最小二乘支持向量机的模型参数.通过第1级推断确定最小二乘支持向量机的权矢量w和偏置项b,通过第2级推断确定模型的超参数μ和ζ,通过第3级推断的模型对比自动选择核函数的系数。根据时用水序列具有周期性和趋势性的特点,建立了基于贝叶斯推断最小二乘支持向量机的时用水量模型,实例分析结果表明,与基于传统最小二乘支持向量机和基于BP网络的预测模型相比,基于贝叶斯最小二乘支持向量机的时用水量预测模型的建模速度更快,预测精度更高。 As traditional least squares support vector machine(LSSVM) model parameters determined by crossvalidation is time-consuming, the Bayesian evidence framework was proposed to infer the LSSVM model parameters, The weight vector w and the bias term b of the LSSVM were obtained on the first level of inference. The model hyperparameters μ,ξ were determined on the second level of inference. The model comparison was performed on the third level of inference in order to automatically determine the coefficient of kernel function, According to the periodicity and trend of water demand series, an hourly water demand forecast model based on Bayesian LSSVM was established. Case analysis shows that the modeling speed of Bayesian LSSVM-based hourly water demand forcast model is faster and forcasting precision is higher than those of traditional LSSVM-based model and BP neural network-based model.
作者 陈磊 张土乔
出处 《天津大学学报》 EI CAS CSCD 北大核心 2006年第9期1037-1042,共6页 Journal of Tianjin University(Science and Technology)
基金 国家自然科学基金(50078048).
关键词 贝叶斯推断 最小二乘支持向量机 供水系统 时用水量预测 Bayesian inference least squares support vector machine water distribution network hourly water demand forcast
  • 相关文献

参考文献10

  • 1Vapnik V. The Nature of Statistical Learning Theory[ M ].Berlin : Springer-Verlag, 1995.
  • 2Suykens J A K, Van Gestel T, de Moor B, et al. Least Squares Support Vector Machines [ M ]. Singapore: World Scientific, 2002.
  • 3Van Gestel T, Suykens J A K, Baestaens D K,et al. Financial time series prediction using least squares support vector machines within the evidence framework [ J ]. IEEE Transactions on Neural Network, 2001 , 12(4) : 809 821.
  • 4Bishop C M. Neural Networks for Pattern Recognition [ M ]. New York: Oxford University Press, 1995.
  • 5Van Gestel T, Suykens J A K, Lanckriet G, et al. Bayesian framework for least squares support vector machine classifiers, Gaussian process and kernel fisher discriminant analysis[ J ]. Neural Computation,2002, 14 : 1115-1147.
  • 6Scholkopf B, Smola A, Muller K M. Nonlinear component analysis as a kernel eighenvalue problem [ J ]. Neural Computation,1998, 10: 1299-1319.
  • 7MacKay D J C. Probable networks and plausible predictions-A review of practical Bayesian methods for supervised neural network [ J ]. Network : Computation in Neural System,1995,6(3) : 469-505.
  • 8Kwok J T. The evidence framework applied to support vector machines [ J ]. IEEE Transactions on Neural Network, 2000,11(5) :1162-1173.
  • 9Mackay D J C. Comparison of approximate methods for handting hyperparameters[J ]. Neural Computation, 1999,11(5) :1035-1068.
  • 10Mackay D J C, Bayesian interpolation[J ]. Neural Computation,1992,4(3) :415-447.

同被引文献172

引证文献23

二级引证文献121

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部