期刊文献+

基于金纳米粒子自组装的分光光度法测定半胱氨酸 被引量:11

Spectrophotometric Determination of Cysteine Based on Self-assembly of Gold Nanoparticles
下载PDF
导出
摘要 在pH4.56的Britton—Roblnson(B-R)缓冲溶液中,半胱氨酸的-SH和-NH3^+分别与金纳米粒子表面进行共价结合和静电作用,导致金纳米粒子的长距离自组装,形成网状超分子结构,并使金纳米粒子的最大吸收波长从520nm红移到660nm。本实验对半胱氨酸引导的金纳米粒子自组装的作用机制进行了研究,建立了操作简便、高灵敏度测定半胱氨酸的分析方法。其线性范围为0.01—0.20mg/L;检出限为2.8μg/L(3σ,2.3×10^-8mol/L)。在实验条件下,其它常见的氨基酸和谷胱甘肽均不干扰测定。 Due to the covalent combination with the SH group and the electrostatic binding with the NH3^+ group of cysteine, gold nanoparticles can self-assemble and form a supermolecular network structure in the Britton-Robinson buffer solution ( pH 4.56). As a result, absorption peak of the gold nanoparticles shifts from 520 nm to 660 nm. The mechanism of self-assembly of gold nanoparticles directed by cysteine was investigated. Based on the study, a simple and sensitive method for cysteine determination has been estab- lished. There is a good linear relationship between the absorbance at 660 nm and cysteine concentration in the range of 0.01 -0.20 mg/L. The corresponding detection limit is 2.8 μg/L (3σ,2.3×10^-8mol/L). Common amino acids and glutathione do not interfere with the determination.
出处 《分析化学》 SCIE EI CAS CSCD 北大核心 2006年第8期1149-1152,共4页 Chinese Journal of Analytical Chemistry
基金 国家自然科学基金(No.20375011) 河北省自然科学基金(No.203111)资助项目
关键词 分光光度法 金纳米粒子 半胱氨酸 Spectrophotometry, gold nanoparticles, cysteine
  • 相关文献

参考文献15

  • 1Blasco F,Medina-Hernández M J,Sagrado S.Anal.Chim.Acta,1997,348(1-3):151~159
  • 2Wang H,Wang W S,Zhang H S.Talanta,2001,53(5):1015~1019
  • 3Spataru N,Sarada B V,Popa E,Tryk D A,Fujishima A.Anal.Chem,2001,74 (3):514~519
  • 4Lau C W,Qin X J,Liang J Y,Lu J Z.Anal.Chim.Acta,2004,514(1):45~49
  • 5Harada D,Naito S,Kawauchi Y,Ishikawa K,Koshitani O,Hiraoka I,Otagiri M.Anal.Biochem,2001,290(2):251~259
  • 6Jin W R,Wang Y.J.Chromatogr.A,1997,769(2):307~314
  • 7黎雪莲,袁若,柴雅琴,张凌燕,王娜,朱强.基于静电吸附甲苯胺蓝和纳米金固定过氧化物酶生物传感器的研究[J].分析化学,2006,34(3):389-392. 被引量:16
  • 8Elghanian R,Storhoff J J,Mucic R C,Letsinger R L,Mirkin C A.Science,1997,277:1078~1081
  • 9Hirsch L R,Jackson J B,Lee A,Halas N J,West J L.Anal.Chem,2003,75(10):2377~2381
  • 10Zhang F X,Han L H,Israel L B,Daras J D,Maye M M,Ly N K,Zhong C J.Analyst,2002,127(4):462~465

二级参考文献13

  • 1Constantine C A,Mello S V,Dupont A,Cao X H,Santos D J,Oliveira O N J,Strixino F T,Pereira E C,Cheng T C,Defrank J J,Leblance R M.J.Am.Chem.Soc.,2003,125:1805 ~1809.
  • 2Nigel F,Eithne D,Timothy M C.J.Electroanal.Chem.,2005,574:359 ~ 366.
  • 3Collins L Z,Maggio B,Gallagher A,York M,Schafer F.J.Dent.,2004,32:47 ~50.
  • 4Navas M J,Jiménez A M,Galán G.Atmos.Environ.,1999,33:2279 ~ 2283.
  • 5Jia J B,WangBQ,WuA,ChengGJ,LiZ,DongSJ.Anal.Chem.,2002,74(9):2217~2223.
  • 6Zhuo Y,Yuan R,Chai Y Q,Tang D P,Zhang Y,Wang N,Li X L,ZhuQ.Electrochem.Commun.,2005,7:355 ~360.
  • 7Tang D P,Yuan R,Chai Y Q,FuYZ,Dai J Y,LiuY,Zhong X.Biosens.Bioelectron.,2005,21(4):539~548.
  • 8Co S J W,Geuze H J.Ser 3 (Immunohistochemistry),1983:323 ~346.
  • 9Cheng L,Gilbert E P,James A C.Anal.Chem.,2001,73:5607 ~5610.
  • 10Ye J Y,LiuJY,Zhang Z Q,Hu J M,DongS J,ShaoYH.J.Electroanal.Chem.,2001,528:123~128.

共引文献15

同被引文献235

引证文献11

二级引证文献28

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部