期刊文献+

偶特征正交几何上Cartesian认证码的构作 被引量:7

Constructions of Authentication Codes from Even Characteristic Orthogonal Geomefry
下载PDF
导出
摘要 利用有限域上偶特征正交几何构作了两个Cartesian认证码,并计算了它们的参数.还按均匀概率分布选取编码规则,计算了模仿攻击成功概率PI和替换攻击成功概率PS. Two constructions of Cartesian authentication codes from orthogonal geometry over finite field with characteristic 2 are given in this paper. Their size parameters and their probabilities of successful impersonation attack and of successful substitution attack are also computed.
出处 《吉林大学自然科学学报》 CAS CSCD 1996年第4期13-17,共5页 Acta Scientiarum Naturalium Universitatis Jilinensis
关键词 认证码 正交几何 有限域 酉几何 偶特征正交几何 authentication, orthogonal geometry, finite field
  • 相关文献

参考文献2

  • 1Wang Zhexian,Designs Codes and Cryplography,1992年,2卷,333页
  • 2Wan Zhexian,Northeastern Mathematical Journal,1992年,8卷,1期,4页

同被引文献42

  • 1[1] Simmons G J. Authentication theory/coding theory[M]. Crypto′84. New York: Springer-Verlag, 1985. 411~431.
  • 2[2] Gilbert E N, Macwilliams F J, Sloane N J A. Codes which decect deception[J]. Bell Syst Tech J of Cryptology, 1995, 53(3):405~424.
  • 3[3] Beutespacher. A perfect and essentially perfect authentication scheme[M]. London: Advance in Cryptology-Eurocrypt, 1987. 403~409.
  • 4[4] Stinson D R. A construction for authentication/secrecy codes from certain combinatorial designs[M]. J of Cryptology, 1988, 2:119~129.
  • 5[5] Desoete M. Some constructions for authentication-secrecy codes[J]. Proceeding of Euroerpt, 1988,(5):36~47.
  • 6[6] Wan Zhexian, Ben Smeets, Peter Vanroose. On the construction of Cartesian authentication codes over symplectic spaces[J]. IEEE Transactions on Information Theory, 1994, 40(3):86~90.
  • 7[7] Wan Zhexian. Construction of Cartesian authentication codes from Unitary geometry[J]. Designs Code and Cryptology, 1992, 2:333~356.
  • 8[8] Wan Zhexian, Feng Rong-quan. Construction of Cartesian authentication codes from Pseudo-symplectic geometry[M]. Beijing: China Crypt′94, 1994. 82~86.
  • 9[9] Wan Zhexan. Further constructions of Cartesian authentication codes from symplectic geometry[J]. Nothereastern Mathematical Journal, 1992, 8(1):4~20.
  • 10[11] Wan Zhexian. Geometry of classical groups over finite fields[M]. New York: Studentlitteratur Lund, 1993.

引证文献7

二级引证文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部