期刊文献+

奇异二阶微分方程边值问题的正解及多解 被引量:2

The positive solution and multiplicity for second order differential equation boundary value problem
下载PDF
导出
摘要 利用拓扑度理论研究了奇异二阶Neumann边值问题.在有关其线性算子方程对应的第一特征值的条件下得到了边值问题正解及多解的存在性. By using the method of topology degree, some existence and multiplicity theorems of positive solution for singular second order Netumann boundary value problems are given under some conditions concerning the first eigenvalue of the relevant linear operator.
出处 《山东大学学报(理学版)》 CAS CSCD 北大核心 2006年第4期4-7,共4页 Journal of Shandong University(Natural Science)
基金 国家自然科学基金资助项目(10371066) 山东省自然科学基金资助项目(Z2000A02)
关键词 二阶边值问题 正解 不动点指数 second order Neumann boundary, value problems positive solutions fixed point index
  • 相关文献

参考文献5

二级参考文献9

  • 1Erbe L H,Proc Am Math Soc,1994年,120卷,743页
  • 2Yang Z,湘潭大学自然科学学报,1993年,15卷,增刊,205页
  • 3Hai Dang,J Math Anal Appl,1996年,198卷,35页
  • 4Wang Haiyan,J Diff Eqs,1994年,109卷,1页
  • 5Rachunkva I, Stanke S. Topologyical degree method in functional boundary value problems at resonance[J].Nonlinear Anal,1996;27(3):271-285
  • 6Wang H Y. On the existence of positive solutions for semilinear elliptic equations in the annuls[J]. J Differential equations,1994; 109:1-7
  • 7Guo D J, Sun J X. Calculations and application of toplogic degree[J]. Journal of Mathematics Research and Exposition, 1988;8 (3) :469-480
  • 8蒋达清,刘辉昭.Existence of Positive Solutions to Second Order Neumann Boundary Value Problems[J].Journal of Mathematical Research and Exposition,2000,20(3):360-364. 被引量:31
  • 9钱爱侠.奇异二阶Neumann边值问题的正解[J].曲阜师范大学学报(自然科学版),2002,28(4):43-46. 被引量:2

共引文献40

同被引文献20

  • 1邹玉梅,丁殿坤.奇异二阶m点边值问题的正解(英文)[J].徐州师范大学学报(自然科学版),2006,24(2):33-36. 被引量:1
  • 2徐夫义,苏华,王健.p-Laplacian非线性奇异边值问题正解的存在性[J].山东大学学报(理学版),2006,41(5):100-103. 被引量:2
  • 3章国庆,吴宝丰.一类拟线性椭圆方程组多重解的存在性[J].吉林大学学报(理学版),2007,45(3):344-348. 被引量:1
  • 4熊明,刘嘉荃,曾平安.一维p-Laplacian方程的两点奇异边值问题正解的存在性[J].数学物理学报(A辑),2007,27(3):549-558. 被引量:7
  • 5DIAZ J, de THELIN F. On a nonlinear parabolic problem arising turbulent flows[J]. SIAM J Math Anal, 1994, 24(4):1085-1111.
  • 6GLOWINSKI R, RAPPAZ J. Approximation of a nonlinear elliptic problem arising in a non-Newtonian fluid flow model in glaciology[J]. Math Model Numer Anal, 2003, 37(1) :175-186.
  • 7ZHAO Dong-xia, WANG Hong-zhou, GE Wei-gao. Existence of triple positive solutions to a class of p-Laplacian boundary value problems [J]. J Math Anal Appl, 2007, 328(2) :972-983.
  • 8LU Hai-shen, DONAL O' Regan, RAVI P Agarwal. Positive solution for singular p-Laplaeian equations with sign-changing nonlinearities using inequality theory[ J]. Applied Mathematics and Computation, 2005, 165(3):587-597.
  • 9LI Xiang-feng. Multiple positive solutions for some four-point boundary value problems with p-Laplacian[ J]. Applied Mathematics and Computation, 2008, 202(1) :413-426.
  • 10BENSEDIK A, BOUCHEKIF M. Symmetry and uniqueness of positive solutions for a Neummm boundary value problem[ J]. Appl Math Lett, 2007, 20(4):419-426.

引证文献2

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部