摘要
Tin-doped indium oxide (ITO) thin films were prepared using conventional radio frequency (RF) planar magnetron sputtering equipped with IR irradiation using a ceramic target of In2O3/SnO2 with a mass ratio of 1∶1 at various IR irradiation temperatures T1 (from room temperature to 400?℃). The refractive index,deposited ratio,and resistivity are functions of the sputtering Ar gas pressure. The microstructure of ITO thin films is related to IR T1,the crystalline seeds appear at T1=300?℃,and the films are amorphous at the temperature ranging from 27?℃ to 400?℃. AFM investigation shows that the roughness value of peak-valley of ITO thin film (R p-v ) and the surface microstructure of ITO thin films have a close relation with T1. The IR irradiation results in a widening value of band-gap energy due to Burstein-Moss effect and the maximum visible transmittance shifts toward a shorter wavelength along with a decrease in the film’s refractive index. The plasma wavelength and the refractive index of ITO thin films are relative to the T1. XPS investigation shows that the photoelectrolytic properties can be deteriorated by the sub-oxides. The deterioration can be decreased by increasing the oxygen flow rate (fo2),and the mole ratio of Sn/In in the samples reduces with an increase in fo2.
Tin-doped indium oxide (ITO) thin films were prepared using conventional radio frequency (RF) planar magnetron sputtering equipped with IR irradiation using a ceramic target of In2O3/SnO2 with a mass ratio of 1:1 at various IR irradiation temperatures T1 (from room temperature to 400 ℃ ). The refractive index, deposited ratio, and resistivity are functions of the sputtering Ar gas pressure. The microstructure of ITO thin films is related to IR T are amorphous at the temperature ranging from 1, the crystalline seeds appear at T1 = 300℃, and the films 27 ℃ to 400 ℃.
出处
《北京科技大学学报》
EI
CAS
CSCD
北大核心
2006年第8期743-743,共1页
Journal of University of Science and Technology Beijing
关键词
铟锡氧化物薄膜
微观结构
射频磁控管溅射法
光电解性能
折射率
indium-tin oxide (ITO)
photoelectrolytic properties
RF-magnetron sputtering
IR irradiation temperature
microstructure
refractive index