期刊文献+

带有侦察子群的蚁群系统 被引量:2

An ant system with scouting subgroup
下载PDF
导出
摘要 针对基本蚁群算法收敛速度慢、容易出现停滞等缺陷,提出一种新的蚁群优化算法——带有侦察子群的蚁群系统.该算法从整个蚁群中分离出一部分蚂蚁组成侦察子群,在优化过程中侦察子群以一定概率做随机搜索,提高了解的多样性;在信息素更新策略上同时使用本代和全局最优蚂蚁,兼顾了本代和历史的搜索成果;同时还采用LK变异算子,对每次搜索的解进行局部优化.最后对三个典型TSP实例进行了仿真实验,结果表明新的算法不仅能够克服早熟现象,而且能够大大加快收敛速度. To solve the disadvantages of the basic ant colony algorithm including slow convergent speed and incidental stagnation behavior, a new ant colony optimization algorithm, named the ant system with scouting subgroup (ASSS), was proposed. In the algorithm a small part of ants were separated and formed a scouting subgroup that random moved at a certain probability to increase results diversity. The pheromone update strategy used the iteration-best-ant and global-best-ant at the same time to make use of both iteration-fruit and history-fruit. LK mutation factor was employed to locally optimize the search results of each step. Three typical traveling salesman problems (TSP) were tested, and the results show that this proposed algorithm can avoid prematurity and speed up convergence.
出处 《北京科技大学学报》 EI CAS CSCD 北大核心 2006年第8期794-798,共5页 Journal of University of Science and Technology Beijing
基金 国家自然科学基金资助项目(No.70371057)
关键词 蚁群系统 蚁群算法 蚁群优化 随机搜索 变异算子 ant system ant colony algorithm ant colony optimization random search mutation factor
  • 相关文献

参考文献9

  • 1Colorni A, Dorigo M, Maniezzo V. Distributed optimization by ant colonies // Proc of the First European Conf on Artificial Life. Paris: France Elsevier publishing, 1992:134.
  • 2Dorigo M, Maniezzo V, Colomi A. Ant system: optimization by a colony of cooperating agents. IEEE Trails Syst Man Cybern B, 1996, 26(1) :29.
  • 3Bonabeau E, Dorigo M, Theraulaz G. Inspiration for optimization from social insect behaviour. Nature, 2000, 406(6) :39.
  • 4Gravel M, Price W L, Gagne C. Scheduling continuous casting of aluminum using a multiple objective ant colony optimization metaheuristic. Eur J Oper Res, 2002, 143:218.
  • 5Merkle D, Middendorf M, Schmeck H. Ant colony optimization for resource-constrained project scheduling. IEEE Trans Evol Comput, 2002, 6(4) :333.
  • 6Gutjah. ACO algorithms with guaranteed convergence to the optimal solution. Int Process Lett, 2002, 82(3) : 145.
  • 7Stutzle T, Hoos H H. MAX-MIN ant system. Future Gener Comput Syst, 2000, 16:889.
  • 8Dorigo M, Gambardella L M. Ant colony system: a cooperative leaming approach to the traveling salesman problem. IEEE Trans Eval Comput, 1997, 1(1): 53.
  • 9吴斌,史忠植.一种基于蚁群算法的TSP问题分段求解算法[J].计算机学报,2001,24(12):1328-1333. 被引量:247

二级参考文献6

  • 1康立山 谢云 等.非数值并行算法(第1册)[M].北京:科学出版社,1997..
  • 2Jiang Rui,Proc Conference on Intelligent Information Processing(WCC 2000 IIP 2000),2000年,478页
  • 3Wu Qinghong,计算机研究与发展,1999年,36卷,10期,1240页
  • 4康立山,非数值并行算法.1 模拟退火算法,1997年
  • 5吴庆洪,张纪会,徐心和.具有变异特征的蚁群算法[J].计算机研究与发展,1999,36(10):1240-1245. 被引量:306
  • 6张素兵,吕国英,刘泽民,周正.基于蚂蚁算法的QoS路由调度方法[J].电路与系统学报,2000,5(1):1-5. 被引量:35

共引文献246

同被引文献24

引证文献2

二级引证文献20

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部