期刊文献+

梯度RBF神经网络在MEMS陀螺仪随机漂移建模中的应用 被引量:11

Application of gradient radial basis function network in the modeling of MEMS gyro's random drift
下载PDF
导出
摘要 为了提高使用精度,研究了某型号MEMS陀螺仪的随机漂移模型。采用游程检验法分析了该陀螺仪随机漂移数据的平稳性,并根据该漂移为均值非平稳、方差平稳的随机过程的结论,采用梯度径向基(RBF)神经网络对漂移数据进行了建模。实验结果表明:相比经典RBF网络模型而言,这种方法建立的模型能更好地描述MEMS陀螺仪的漂移特;相对于季节时间序列模型而言,其补偿效果提高了大约15%。 In this paper the random dritf of a micro-electro-mechanical system (MEMS) gyro is analyzed and modeled in order to improve its performance. The analysis, which is based on run test, shows that the drift is not a weak stationary random process. Thus, a model based on gradient radial basis function neural network is applied to deal with the non-stationary process. The experiments show that the model is suitable for the random drift.
出处 《中国惯性技术学报》 EI CSCD 2006年第4期44-48,共5页 Journal of Chinese Inertial Technology
关键词 微机电陀螺 随机漂移 非平稳随机过程 梯度RBF神经网络 建模 游程检验 MEMS gym random drift non-stationary process gradient RBF network modeling run tests
  • 相关文献

参考文献8

  • 1Mohinder S Grewal, Lawrence R Weill, Angus P Andrews. Global positioning systems, inertial navigation, and integration[M]. John Wiley Publishing, 2001.
  • 2Sukkarieh S, Nebot E M, Durrant-Whyte H F. Achieving integrity in an INS-GPS navigation loop for autonomous land vehicle applications[A]. 1998 IEEE International Conference on Robotics and Automation[C]. Vol 4, May 1998: 3437-3442.
  • 3Jiang Hong, Yang Wei-qin, Yang You-tang. Aerospace and electronic systems[J]. IEEE Transactions, 1996, 32(3): 1138 - 1143.
  • 4Baglio S, Savalli N, Castorina S. Theoretical study, modeling and realization of resonant gyroscopes with optical output. Sensors[A]. Proceedings of IEEE[C]. Vol. 2, June 12-14, 2002:1069 - 1074.
  • 5Fisz M. Probability theory and mathematical statistics[M]. Wiley, New York, 1963.
  • 6Bendat J S, Piersol A G. Random data: Analysis and measurement procedures[M]. Wiley-interscience, 1971.
  • 7G E P Box, G M Jenkins. Time series analysis: Forecasting and control[M]. Oakland, CA: Holden-Day, 1976.
  • 8Chng E S, Chen S, Mulgrew B. Gradient radial basis function networks for nonlinear and nonstationary time series prediction[J]. IEEE Transactions on Neural Networks, 1996, 7(1): 190-194.

同被引文献75

引证文献11

二级引证文献33

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部