期刊文献+

超欧拉图生成子图边数问题的综述(英文)

On the problem of number of edges in spanning eulerian subgraphs
下载PDF
导出
摘要 综述了超欧拉图的生成子图边数问题,包括该问题的提出及研究发展过程,并罗列了两类公开问题:能否证明边数问题的下确界是35,若不能证明,能否找到更小的下确界?对一些著名的超欧拉图类,如具有两棵边不交的生成树的图等,能否证明其满足Catlin-猜想或35-猜想? In this paper, eulerian subgraphs, including we survey some results on the its origin and development of were posed:Determine whether the infimum of the problem problem of number of edges in spanning research. Two classes of open problems of number of edges in spanning eulerian 3/5 conjecture for subgraphs is 3/5;if false,try for smaller one. Can we do the Catlin - conjecture or -3/5 some fitmous supereulerian graphs, for example, the graphs with 2 edge- disjoint spanning trees?
出处 《重庆工商大学学报(自然科学版)》 2006年第4期323-325,共3页 Journal of Chongqing Technology and Business University:Natural Science Edition
关键词 超欧拉图 欧拉生成子图 边数 Catlin-猜想 Supereulerian graphs spanning eulerian subgraphs number of edges Catlin - conjecture
  • 相关文献

参考文献3

二级参考文献11

  • 1Chen Z H,J Comb Math Comb Computing,1991年,9期,70页
  • 2Cat Xiaotao,数学年刊.A,1989年,4期,117页
  • 3Zhan S M,Ars Combinatoria,1988年,22卷,89页
  • 4Lai H J,J Graph Theory,1988年,12卷,11页
  • 5Lai H J,博士学位论文,1988年
  • 6Bondy J A, Murty U S R. Graph Theory with Application[M]. American Elsevier, New York, 1976
  • 7Lai Hongjian. Lecture Notes on Supereulerian Graphs and Related Topics[M]. Preprint, 1996
  • 8Li Dengxin, Li Deying, Mao Jingzhong. Maximum number of edges in spanning eulerian subgraph[J].Discrete Mathematics, 2004;274:299-302
  • 9Chen Zhihong, Lai Hongjian. Reduction techniques for supereulerian graphs and related topics-An update[J]. Combinatorics and Graph Theory, World Scientific Singapore, 1995;95(1)53-69
  • 10李登信.关于Catlin的2/3—猜想[J].渝州大学学报,2000,17(3):1-4. 被引量:3

共引文献9

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部