期刊文献+

染料敏化太阳电池纳米结构对输出特性的影响 被引量:2

Effect of dye-sensitized solar cell nanostructure on cell output characteristics
下载PDF
导出
摘要 根据电子在半导体中的扩散方程,对纳米TiO2染料光敏化太阳电池(DSSC)的输出特性(J-V)进行了研究。多孔薄膜TiO2孔隙率(P)直接影响敏化电极光吸收系数(a)以及电子扩散系数(D),将P与a及D的关系式代入扩散方程,得到了电极纳米结构(孔隙率)对电池输出特性(J-V)影响的计算模型。在光电极孔隙率的实验范围(0.41~0.71),进行了模型分析。研究表明,在孔隙率0.41~0.71的范围内,开路电压(VOC)随P值增大基本保持不变,而短路电流(ISC)则随P值增大而明显减小,因此电池的最大输出功率减小,为获得最大输出功率,P应该控制在0.41~0.5。数值模拟与实验数据进行比较,两者符合良好,从而验证了所建立的模型。 The output characteristic (J-V) of a TiO2 dye-sensitized solar cell (DSSC) is investigated based on the equation of electron diffusion in semiconductor. As porosity (P) of sensitized TiO2 electrode is related with the electrode light absorption coefficient (α) and electron diffusion coefficient (D), integrating the formulas representing the P-α and P-D relationship into the electron diffusion equation, a theoretical model can be obtained to study the effect of porosity on cell J-V characteristics. Simulations are conducted in the experimental porosity range (0.41-0.71). It is found that in the simulation range, the open-circuit voltage (VOC) remains constant while short circuit current (ISC) decreases significantly with an increase in P, resulting a reduction in the maximum power output, in order to obtain the maximum cell output, P should be in the range of 0.41-0.5. Simulation results fit reasonably well with experimental data and thus validate the proposed model.
出处 《电源技术》 CAS CSCD 北大核心 2006年第9期744-748,共5页 Chinese Journal of Power Sources
关键词 染料敏化太阳电池 纳米结构 孔隙率 数学模型 输出特性 dye-sensitized solar cell (DSSC) nanostructure porosity mathematic model output characteristics
  • 相关文献

参考文献30

二级参考文献135

共引文献127

同被引文献25

  • 1王玉兰,黄宇,周丽萍,李红.液结太阳能电池敏化剂研究进展[J].电源技术,2005,29(6):416-418. 被引量:4
  • 2倪萌,LEUNG Michael.基底对染料敏化太阳电池J-U特性的影响[J].电源技术,2006,30(8):668-671. 被引量:2
  • 3GRATZEL M. Photoelectrochemical cells [J]. Nature, 2001, 414:338-344.
  • 4SODERGREN S, HAGFELDT A, OLSSON J, et al.Theoretical models for the action spectrum and the current-voltage characteristics of microporous semiconductor films in photoelectrochemical cells [J]. Journal of Physical Chemistry, 1994, 98 (21):5 552-5 556.
  • 5ROTHENBERGER G, FITZMAURICE D, GRATZEL M. Spectroscopy of conduction band electrons in transparent metal oxide semiconductor films: optical determination of the flatband potential of colloidal titanium dioxide films [J]. Journal of Physical Chemistry, 1992, 96(14): 5 983-5 986.
  • 6DLOCZIK L, ILEPERUMA O, LAUERMANN I, et al, Dynamic response of dye-sensitized nanocrystalline solar cells: characterization by intensity-modulated photocurrent spectroscopy [J]. Journal of Physical Chemistry B, 1997, 101(49); 10 281-10 289.
  • 7LEE J J, COIA G M, LEWIS N S. Current density versus potential characteristics of dye-sensitized nanostructured semiconductor photoelectrodes. 1.analytical expressions [J].Journal of Physical Chemistry B, 2004, 108(17): 5 269-5 281.
  • 8LEE J J, COlA G M, LEWIS N S. Current density versus potential characteristics of dye-sensitized nanostructured semiconductor photoelectrodes 2 simulations [J].Journal of Physical Chemistry B,2004, 108(17): 5 282-5 293.
  • 9FREDIN K, NISSFOLK J, HAGFELDT A. Brownian dynamics simulations of electrons and ions in mesoporous films [J]. Solar Energy Materials and Solar Cells, 2005, 86(2): 283-297.
  • 10HARA K, HORIGUCHI T, K/NOSHITA T, et al. Highly efficient photo-to-electron conversion with mereurochrome-sensitized nanoporous oxide semiconductor solar cells [J].Solar Energy Materials and Solar Cells, 2000, 64(2): 115-134.

引证文献2

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部