期刊文献+

基于支持向量机铅酸蓄电池的分类研究

A new approach based on support vector machine for lead-acid battery classification
下载PDF
导出
摘要 铅酸蓄电池是目前广泛使用的一种二次电池。在胶体电解质铅酸蓄电池的生产中,灌注的胶体电解质量不够的铅酸蓄电池必须在化成结束后重新补充胶体电解质。一般而言,判断铅酸蓄电池是否需要补充电解质是依据其化成后的电池容量和电解液体积。很明显这是一种耗时且不利于胶体电解质铅酸蓄电池配组的方法。文章提出了一种基于支持向量机的铅酸蓄电池补胶分类的方法,通过铅酸蓄电池化成过程中间步骤四个时间点的测试电压判断铅酸蓄电池是否需要补充胶体电解质。研究结果表明,该方法优于基于学习向量量化神经网络的分类方法,可以有效地缩短胶体电解质铅酸蓄电池生产时间。 In lead-acid battery manufacturing, batteries with improper electrolyte quantity must be selected from normal batteries at the end of formation according to their capacity and electrolyte volume, which apparently is not beneficial for battery assemblage and is a time cost process. In this paper a new method called support vector machine (SVM) has been used to select batteries with improper electrolyte quantity based on battery discharge voltage at four different time points at the middle of formation. The SVM gives satisfactory prediction accuracy for lead-acid battery classification, which is better than results obtained from learning vector quantization (LVQ) neural network, This method can reduce lead-acid battery manufacturing time on the base of the database constructed by previous battery test result.
出处 《电源技术》 CAS CSCD 北大核心 2006年第9期757-760,共4页 Chinese Journal of Power Sources
关键词 支持向量机(SVM) 学习向量量化神经网络(LVQ) 铅酸蓄电池 胶体电解质 快速分类 support vector machine (SVM) learning vector quantization (LVQ) neural network lead-acid battery gelled-electrolyte fast classification
  • 相关文献

参考文献13

  • 1HARRISON A I.The Variable Float Voltage Characteristics of VRLA Cells[C].Proceedings of the INTELEC 1997,IEEE,1997,238-243.
  • 2BERNDT D.Maintenance-free batteries[M].2nd ed.Taunton,Somerset,UK:research studies press ltd,1997.
  • 3TORCHEUX L,LAILLER P.A New Electrolyte Formulation for Low Cost Cycling Lead Acid Batteries[J].J Power Sources,2001,95:248-254.
  • 4BHATTACHARYA A,BASUMALLICK I N.Effect of mixed additives on lead-acid battery electrolyte[J].J Power Sources,2003,113:382-387.
  • 5ROSSINOT E,LEFROU C,CUN J P.A study of the scattering of valveregulated lead acid battery characteristics[J].J Power Sources,2003,114:160-169.
  • 6HAN J,KAMBER M.Data Mining:Concepts and Techniques[M].New York:Academic Press,2001.
  • 7VAPNIK V N.The Nature of Statistical Learning Theory[M].New York:Springer,1995.
  • 8HAYKIN S.Neural Networks[M].2nd ed New Jersey:Prentice-Hall,1999.
  • 9BURGES C J C.A tutorial of support vector machines for pattern recognition[EB/OL].http://svm.research.bell-labs.com/SVMdoc.html,19981-02-15.
  • 10CHANG C C,LIN C J.LIBSVM:a library for support vector machines[EB/OL].http://www.csie.ntu.edu.tw/~cjlin/libsvm,2001.Software available at,2001-12-24.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部