期刊文献+

多相材料微结构多目标拓扑优化设计 被引量:24

MULTIPLE OBJECTIVE TOPOLOGY OPTIMAL DESIGN OF MULTIPHASE MICROSTRUCTURES
下载PDF
导出
摘要 在采用多尺度均匀化方法求解微结构等效特性的基础上,提出了多相材料微结构的多目标优化设计模型.以组分材料用量为约束,采用周长控制消除棋盘格,结合有限元方法和对偶凸规划求解技术,对两相和三相材料微结构多项等效模量的组合进行了优化设计.研究比较了微结构网格粗细、材料组分以及三相材料微结构优化中的两相实体材料弹性模量相对比例不同对优化结果的影响.数值算例验证了优化模型和优化算法的有效性,表明了相关因素对优化结果的影响. The overall behavior of an elastic material with a periodic microstructure is governed by the microstructure, whose effective properties may be computed using a homogenization method. Improvements in materials performance can be obtained by designing new topologies of microstructures of these materials. The topology and volume fraction of the microstructure determines the effective properties of the materials. A multiple objective function model is presented to optimize the topology of the periodic microstructure with two or three-phase materials. The combined value of effective elastic properties is maximized. Constraints on the material volume fraction and the perimeter control are considered for eliminating the checkerboard without the restriction of prescribed microstructure symmetry. By means of the finite element method and convex programming techniques, several cases of optimal design of multiphase microstructures are solved. Influences of volume fraction, mesh and elastic modulus ratio of three-phase materials on the optimal microstructures are discussed.
出处 《力学学报》 EI CSCD 北大核心 2006年第5期633-638,共6页 Chinese Journal of Theoretical and Applied Mechanics
基金 国家自然科学基金(90405016 10372083) 航空科学基金(04853080) 973计划(2006CB601205)资助项目.~~
关键词 拓扑优化 微结构设计 多相材料 多目标 均匀化方法 topology optimization, microstructure design, multiphase materials, multiple objective function homogenization method
  • 相关文献

参考文献14

  • 1Bendsφe MP, Kikuchi N. Generating optimal topologies in structural design using a homogenization method. Computer Methods in Applied Mechanics and Engineering,1988, 71(2): 197-224
  • 2Sigmund O. Materials with prescribed constitutive parameters: an inverse homogenization problem. International Journal of Solids and Structures, 1994, 31(17): 2313-2329
  • 3Sigmund O. Tailoring materials with prescribed constitutive parameters. Mechanics of Materials, 1995; 20:351-368
  • 4Bensoussan A, Lions JL, Papanicolaou G. Asymptotic Analysis for Periodic Structures. North Holland, Amsterdam, 1978
  • 5Yin LZ, Yang W. Optimality criteria method for topology optimization under multiple constraints. Computers and Structures, 2001, 79:1839-1850
  • 6刘书田,郑新广,程耿东.特定弹性性能材料的细观结构设计优化[J].复合材料学报,2001,18(2):124-127. 被引量:20
  • 7Silva ECN, Fonseca JSO, Kikuchi N. Optimal design of periodic piezocomposites. Computer Methods in Applied Mechanics and Engineering, 1998, 159:49-77
  • 8Neves MM, Rodrigues H, Guedes JM. Optimal design of periodic linear elastic Microstructures. Computers and Structures, 2000, 76(1-3): 421-429
  • 9袁振,吴长春,庄守兵.基于杂交元和变密度法的连续体结构拓扑优化设计[J].中国科学技术大学学报,2001,31(6):694-699. 被引量:47
  • 10Sigmund O. A new class of extremal composites. Journal of the Mechanics and Physics of Solids, 2000, 48:397-428

二级参考文献10

共引文献62

同被引文献167

引证文献24

二级引证文献172

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部