期刊文献+

一种有效的体育视频目标跟踪算法 被引量:4

An Efficient Object Tracking Algorithm of Sports Video
下载PDF
导出
摘要 论文研究了面向体育视频的运动目标跟踪技术,提出了一种最优化的混合跟踪方法。首先,采用粒子滤波算法来预测运动目标的初略位置,通过比较预测位置上的目标同目标模型之间的相似度,当相似度小于一定的阀值时,认为目标运动模型发生了根本变化,需要启用新的运动模型;当相似度大于一定的阀值时则认为目标运动模型没有发生大的变化,不需要启用新的运动模型,通过这种方式找到目标的最优化运动模型。最后将最优化的运动模型用于基于核的均值转移算法中,从而获得运动目标的精确位置。 We investigate the problem of object tracking from sports videos,and propose a new hybrid object tracking method.First,we use different dynamic model in particle filter algorithm to estimate the position of object,and then compute comparability between object model and object on the estimated position,if the comparability is less than const value,we consider the object's dynamic model has changed and need to modify the dynamic model;if the comparability is more than const value,we consider the object's dynamic model has not changed and don't need to modify the dynamic model,by this procedure,we can find the dynamic model of optimization.Finally we use this dynamic model of optimization in mean-shift algorithm,and compute object's true position.
出处 《计算机工程与应用》 CSCD 北大核心 2006年第26期201-203,207,共4页 Computer Engineering and Applications
基金 国家自然科学基金资助项目(编号:60473002) 国际科技合作重点资助项目(编号:2005DFA11060) 北京市自然科学基金重点资助项目(编号:4051004) 北京市科技计划资助项目(编号:Z0004024040231)
关键词 体育视频 粒子滤波 均值转移算法 混合跟踪算法 sports video,particle filter,mean-shift,hybrid tracking algorithm
  • 相关文献

参考文献3

  • 1Katja NUmmiaro,Esther Koller-Meier,Luc Van Gool.A Color-based Particle Filter[J].Image and Vision Computing,2002
  • 2马波,张田文.一个新颖的轮廓线跟踪算法[J].信号处理,2004,20(2):174-178. 被引量:4
  • 3Dorin Comaniciu,Peter Meer.Kernel-based Object Tracking[J].IEEE Transactions On Pattern Analysis and Machine Intelligence,2003;25(5)

二级参考文献12

  • 1AMINI,A.A.,Weymouth,T E,Jain,R.C.Using Dynamic programming for solving variational problemsin vision. IEEE Transactions on PAMI,1989,12(9):855-867.
  • 2Isard,M.,Blake,A.Condensation-conditional density propagation for visual tracking.Int.J.Computer Vision,1998,29(1):5-28.
  • 3Peterfreund,N.Robust tracking of position and velocity with kalman snakes.IEEE Trans.On Pattem Analysis & Machine Intell.,1999,21(6):564-569.
  • 4Blake,A.,Yuille,A.Active Vision.London:The MIT Press,1992.3-20.
  • 5Blake,A.,Isard.M.Active contours.London:Springer-vedag,1998.
  • 6Kass,M.,Witkin,A.,Terzopoulos,D.Snakes:Active contour models.Proc.1^st Int.Conf.On Computer Vision.London:IEEE computer society press,1987,259-268.
  • 7Chen,Yunqiang,Rui,Y,Huang,T S.JPDAF Based HMM for Real-Time Contour Tracking.http://www.ifp.uiuc.edu/-chenyq/publications/cvprol-ukf.pdf.
  • 8Chen,Yunqiang,Rui,Y,Huang,T S.Parametric contour tracking using unscented kalman filter.http://www.ifp.uiuc.edu/-chenyq/publications/ICIP02-ukf.pdf.
  • 9Blake,A.,Isard,M.,Reynard,D.Learning to track the visual motion of contours.Artificial Intell.1995,78:179.212.
  • 10Chakraborty A,Staib L H,Duncan J S.An integrated approach to boundary finding in medical images.Proc.IEEE Workshop on Biomedical Image Analysis.1994.13.22.

共引文献3

同被引文献69

引证文献4

二级引证文献23

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部