摘要
An algorithm to compute three-dimensional sediment transport effect was proposed in this paper to enhance the capability of depth-averaged numerical models. This algorithm took into account of non-uniform distributions of flow velocities and suspended sediment concentrations along water depth, it significantly enhanced the applicability of 2D models in simulating open channel flows, especially in channel bends. Preliminary numerical experiments in a U-shaped and a sine-generated experimental channel indicate that the proposed method performs quite well in predicting the change of bed-deformation in channel bends due to suspended sediment transport. This method provides an effective alternative for the simulations of channel morphodynamic changes.
An algorithm to compute three-dimensional sediment transport effect was proposed in this paper to enhance the capability of depth-averaged numerical models. This algorithm took into account of non-uniform distributions of flow velocities and suspended sediment concentrations along water depth, it significantly enhanced the applicability of 2D models in simulating open channel flows, especially in channel bends. Preliminary numerical experiments in a U-shaped and a sine-generated experimental channel indicate that the proposed method performs quite well in predicting the change of bed-deformation in channel bends due to suspended sediment transport. This method provides an effective alternative for the simulations of channel morphodynamic changes.
基金
Project support by the National Natural Science Foundation of China (Grant No: 50479034), the Natural Science Foundation of Tianjin (Grant No: 05YFSZSF02100).