期刊文献+

一类β-GARCH模型的参数估计

On the Estimation of the Parameters of β-GARCH Models
下载PDF
导出
摘要 首次提出了基于广义误差分布(Generalized error d istribution,简称GED)的一类β-广义自回归条件异方差模型(Generalized Autoregressive Cond itional heteroscedastical,简称β-GARCH),给出了该模型的平稳遍历性和高阶矩的存在条件,在GED下,将时间序列尾部的特征融入到β-GARCH模型的参数估计之中,并给出了该模型估计的BHHH算法. A new β - GARCH model with GED is proposed for modeling nonlinear time series. The conditions of stationarity and traversalability and high moments of the model are derived. The estimation of the β - GARCH parameters of the model take time series heavy- tailed nature into account,and it can be easily done through BHHH algorithm.
出处 《湖北民族学院学报(自然科学版)》 CAS 2006年第3期220-222,共3页 Journal of Hubei Minzu University(Natural Science Edition)
基金 国家自然科学基金资助项目(7047001)
关键词 β-GARCH GED 平稳性 高阶矩 参数估计 BHHH算法 β- GARCH GED stationarity hign moments BH HH algorithm parameter estimate
  • 相关文献

参考文献9

  • 1Hongzi An,Min Chen,Fuchun Huang.The geometric ergodicity and existence of monments for a class of non-linear time series model,Statistic a probability Letters,1997,31:213~224.
  • 2安鸿志,陈敏.非线形时间序列分析[M].上海:上海科学技术出版社,1998.
  • 3Bollerslev.Generalized Autoregressive Conditional Heteroskedasticity[J].Journal of Econometrics,1986,31:307~327.
  • 4Eileen F,Pierre S T.Estimating EGARCH-M Models:Science or Art?[J].The Quarterly Revi-ew of Economics and Finance,1998,38:167~180.
  • 5Engel.Autoregressive Conditional Heteroscedasticity with Estimates of the Variance of United Kingdom Inflation[J].Econometrica,1982,50:987~1008.
  • 6Ouagnina Hili.On the estimation of models[J].Statistics & probability letters,1999,49:285~293.
  • 7黄晓薇.关于一类模型的参数估计研究[D].长春:吉林大学,2005.
  • 8龚锐,陈仲常,杨栋锐.GARCH族模型计算中国股市在险价值(VaR)风险的比较研究与评述[J].数量经济技术经济研究,2005,22(7):67-81. 被引量:99
  • 9田铮,吴芳琴,王红军.非线性时间序列建模的混合GARCH方法[J].系统仿真学报,2005,17(8):1867-1871. 被引量:9

二级参考文献18

  • 1陆懋祖.高等时间序列经济计量学[M].上海人民出版社,1998..
  • 2Chun Shan Wong and Wai Keung Li, On a Mixture Autoregressive Model [J]. J.R.Statist.Soc.B, 2000, 62(1): 95-115.
  • 3Chun Shan Wong and Wai Keung Li, On a Mixture Autoregressive Conditional Heteroscedastic Model [J]. Journal of the American Statistical Association, 2001, 96: 982-994.
  • 4Benes V E. Existence of Finite Invariant Measures for Markov Processes [C]. Proceedings of the American Mathematical Society, 1967, 18: 1058-1061.
  • 5Goldberg S. Difference Equations [M]. New York: Wiley. 1958.
  • 6Wu, C.F.J, On the Convergence Properties of the EM Algorithm [R]. The Annals of Statistics, 1983, 11: 95-103.
  • 7Box G. E P. Jenkins, G.M. and Reinsel,G.C. Time Series Analysis: Foreca-sting and Control [M]. 3rd edn. Englewood Cliffs: Prentice Hall 1994.
  • 8Tong, H. Non-linear Time Series [M]. New York: Oxford University Press, 1990.
  • 9Nhu.D. LE, R. Douglas Martin, and Adrian E. Raftery, Modeling Flat Stretches, Bursts, and Outliers in Time Series Using Mixture Transition Distribution Models [J]. Journal of the American Statistical Association, 1996, 91: 1504-1515.
  • 10皮埃特罗·潘泽等著,綦相译.《用VaR度量市场风险》[M].机械工业出版社,2001.

共引文献109

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部