期刊文献+

非线性时间序列预测的前馈网络方法及应用 被引量:4

A Research on Method and Application of Neural Networks for Time Series Prediction
下载PDF
导出
摘要 样本构成、网络结构、学习算法是影响前馈网络应用的三大关键问题。本文提出了一种基于门限自回归TAR模型的非线性时间序列预测前馈网络方法,该方法利用TAR模型的门限值对训练样本进行分群,依据TAR模型的阶数、训练样本数等确定前馈网络结构,网络学习算法采用基于梯度法和共轭梯度法相结合的联合梯度算法。应用研究表明该方法有效地改善了网络的泛化性能,提高了预报精度,同时也缩短了网络的训练时间。 Multilayer feedforward neural networks have been used successfully to predict time series data. But the neural networks’performance is highly dependent on its structure,learning algorithm, training pairs, activation functions, and on the overfitting problem among other things. In this paper, we propose certain enhancements to go with the problem for feed forward neural works to become a practical forecasting tool. The basic idea is to use the threshold autoregressive model to determine the numbers of neural networks needed and the structure of each component. This process minimizes the data required and consequently the size of the network. A hybrid gradient method is used to train the network instead of backpropagation algorithm. Case studies with hydrological time series prediction are prestented. The improvement both in the prediction performance and convergence speed are found to be considerable.
出处 《水力发电学报》 CSCD 北大核心 1996年第3期24-32,共9页 Journal of Hydroelectric Engineering
基金 中国博士后基金 国家自然科学基金
关键词 前馈网络 时间序列 非线性 模型 水文预报 Feedforward neural network Time series Nonlinear TAR model Hydrological forecasting.
  • 相关文献

参考文献1

共引文献4

同被引文献14

引证文献4

二级引证文献9

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部