期刊文献+

解一类非线性极大极小问题的神经网络 被引量:1

THE NEURAL NETWORK MODELS FOR SOLVING THE NONLINEAR MINIMAX PROBLEM
下载PDF
导出
摘要 考虑了一类非线性极大极小问题,通过将其转化为等价非线性凸规划提出了求解它的一个神经网络模型,严格证明了新模型是Lyapunov稳定的,并且在有限时间内收敛到原问题的一个精确解。与已有模型相比,新模型结构简单,更适合硬件实现。数值实验表明,该模型不仅可行而且有效。 The paper considers the nonlinear minimax problem. We convert it into equivalent nonlinear convex promgramming problem. Then we propose a new neural network to solve it. It is shown that the proposed neural network is stable in the sense of Lyapunov and can converge to exact optimal solution of the original problem. Compared with the existing neural networks, the new model has simple structure and can be implemented in hardware easily. Simu- lation results demonstrate the effectiveness and characteristics of the proposed neural network.
出处 《陕西科技大学学报(自然科学版)》 2006年第4期90-93,101,共5页 Journal of Shaanxi University of Science & Technology
基金 国家自然科学基金(10571115)
关键词 非线性极大极小问题 非线性凸规划 神经网络 有限时间收敛 nonlinear minimax problem nonlinear convex programming neural network finite-time convergence
  • 相关文献

参考文献3

二级参考文献12

  • 1Zhu X,J Parallel and Distributed Computing,1992年,14卷,345页
  • 2Bingsheng He.A new method for a class of linear variational inequalities[J]. Mathematical Programming . 1994 (1-3)
  • 3Bingsheng He.A projection and contraction method for a class of linear complementarity problems and its application in convex quadratic programming[J]. Applied Mathematics & Optimization . 1992 (3)
  • 4Patrick T. Harker,Jong-Shi Pang.Finite-dimensional variational inequality and nonlinear complementarity problems: A survey of theory, algorithms and applications[J]. Mathematical Programming . 1990 (1-3)
  • 5R. T. Rockafellar.Computational schemes for large-scale problems in extended linear-quadratic programming[J]. Mathematical Programming . 1990 (1-3)
  • 6Jong-Shi Pang.Asymmetric variational inequality problems over product sets: Applications and iterative methods[J]. Mathematical Programming . 1985 (2)
  • 7Stella Dafermos.An iterative scheme for variational inequalities[J]. Mathematical Programming . 1983 (1)
  • 8J. S. Pang,D. Chan.Iterative methods for variational and complementarity problems[J]. Mathematical Programming . 1982 (1)
  • 9B. C. Eaves.On the basic theorem of complementarity[J]. Mathematical Programming . 1971 (1)
  • 10He,B. S.Solving a class of linear projection equations. Numerische Mathematik . 1994

共引文献144

同被引文献9

  • 1Y. S. Xia, J. Wang. A general methodology for designing globally convergent optimizationneural networks [ J ]. IEEE Tran. on Neural Networks, 1998,9 : 1311 - 1343.
  • 2Y. S. Xia. A new neural network for solving linear programming and quadratic programming problem[J]. IEEE Trans. on Neural Networks, 1996,7 : 1544 - 1547.
  • 3A Bouzerdorm, T R Pattison. Neural Network for quadratic optimization with bound constrains [ ] ]. IEEE Tmn. on Neural Networks, 1993,4:293 - 304.
  • 4Gao Xingbao. A neural network for a class of extended linear variational inequalities[J]. Chinese Journal of Electron- ics,2001,10(4) :471 -475.
  • 5D Kinderlehrer, G Stampacchia. An introduction to variational inequalities and their applications [ M ]. New York: Acadimic, 1980.
  • 6M. Avfiel, Nonlinear Programming: Analysis and Method. Englewood Cliffs, NJ : Prentice - Hall, 1976.
  • 7X.. B. Gao, L. - Z. Liao, L. Q. Qi. A novel neural network for variational inequalities with linear and nonlinear constraints[J]. IEEE Trans. Neural Network, 2005,16(6) :1305 - 1317.
  • 8杨红梅.求解凸不等式组问题的神经网络方法[J].昌吉学院学报,2009(3):95-97. 被引量:1
  • 9李师正,王卿文.半无限规划的鞍点与对偶性[J].数学物理学报(A辑),1996,16(2):174-178. 被引量:5

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部