期刊文献+

简并光学参量振荡器混沌反控制 被引量:11

Anti-control of chaos on the degenerate optical parametric oscillator
原文传递
导出
摘要 提出一种实现简并光学参量振荡器混沌反控制的方法,用正弦信号调制简并光学参量振荡器的基模衰减率,使简并光学参量振荡器从定态输出转化为混沌态.数值模拟结果表明,选择不同的调制幅度和调制角频率,只要满足系统的最大李雅谱诺夫指数大于零,即可实现不同的混沌轨道重构.通过比较最大李雅谱诺夫指数λmax随调制幅度和调制角频率变化曲线,指出系统从周期态调制到混沌态比从无亚谐波输出的定态调制到混沌态更容易,有更宽的调制幅度和调制角频率选择范围. We present a method of anti-control of chaos on the degenerate optical parametric oscillator via modulating the reduced decay rate of the fundamental mode with a sinusoid wave to convert the steady state without output of subharmonical mode or periodic state into chaotic state. Numerical simulation shows that there are different chaotic orbits corresponding to different modulation amplitude and modulating angular frequency only if the maximum Lyapunov exponent of the system is positive. The maximum Lyapunov exponent as a function of modulation amplitude and modulating angular frequency is calculated respectively. We point out here that converting the steady state without output of subharmonical mode into chaotic state is more difficult than converting the periodic state into chaotic state because narrower range of modulation amplitude and modulating angular frequency can be used in the former case.
作者 冯秀琴 沈柯
出处 《物理学报》 SCIE EI CAS CSCD 北大核心 2006年第9期4455-4459,共5页 Acta Physica Sinica
关键词 简并光学参量振荡器 混沌反控制 调制 degenerate optical parametric oscillator, anti-control of chaos, modulating
  • 相关文献

参考文献15

  • 1Chen G R,Lai D 1998 Int.J.Bifur.Chaos 8 1585
  • 2Devaney R L 1987 An Introduction to Chaotic Dynamical Systems (Addison-Wesley:NY) p85
  • 3Wang X F,Chen G R 1999 Int.J.Bifur.Chaos 9 1453
  • 4Wang X F,Chen G R 2000 Chaos 10 771
  • 5Li T Y,Yorke J A 1975 Am.Math.Monthly 82 481
  • 6Yang L,Liu Z R,Chen G R 2002 Int.J.Bifur.Chaos 12 1121
  • 7禹思敏.一种新型混沌产生器[J].物理学报,2004,53(12):4111-4119. 被引量:23
  • 8王荣,沈柯.延时线性反馈法控制双环掺铒光纤激光器混沌[J].物理学报,2001,50(6):1024-1027. 被引量:20
  • 9Zhang S H,Shen K 2003 Chin.Phys.12 149
  • 10Zhang S H,Shen K 2004 Chin.Phys.13 1215

二级参考文献20

  • 1[1]Matsumoto T, Chua L O, Komuro M 1985 IEEE Trans. CAS- Ⅰ 32 798
  • 2[2]Yin Y Z 1997 Int. J. Bifurc. Chaos 7 1401
  • 3[3]Matsumoto T, Chua L O, Kobayashi K 1986 IEEE Trans. CAS- Ⅰ 33 1143
  • 4[4]Cuomo K M, Oppenheim A V, Strogatz S H et al 1993 IEEE Trans. CAS- Ⅱ 40 626
  • 5[5]Yalcin M E, Suykens J A K, Vandewalle J 2000 IEEE Trans. CAS- Ⅰ 47 425
  • 6[6]Tang W K S, Zhong G Q, Chen G et al 2001 IEEE Trans. CAS- Ⅰ 48 1369
  • 7[7]Li J F, Li N 2002 Chin. Phys. 11 1124
  • 8[8]Liu C X 2002 Acta Phys. Sin. 51 1198 (in Chinese)[刘崇新 2002 物理学报 51 1198]
  • 9[12]Yu S M, Qiu S S, Lin Q H 2003 Sci. Chin. F 46 104
  • 10[13]Sprott J C 1994 Phys. Rev. E 50 R647

共引文献52

同被引文献75

引证文献11

二级引证文献9

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部