期刊文献+

超高密度电学信息存储研究进展 被引量:3

Progress in ultrahigh density electrical information storage
下载PDF
导出
摘要 21世纪是经济信息化、信息数字化的高科技时代,信息的爆炸式增长及电子器件持续微型化的要求需要不断研究和开发更高存储密度、更快响应速度、更长存储寿命及可反复读、写的材料和器件.在纳米/分子尺度上实现存储功能的超高密度信息存储已成为当前信息领域一个倍受关注的研究热点.本文从存储材料和技术角度介绍了基于电学双稳态的超高密度信息存储最新研究进展. The 21century is an era of high technology with information-based economy and digitized information. The explosive increase of information and the miniaturization of electronic devices demand new recording technologies and materials that combine high density, fast response, long retention time and re-writing capability. Ultrahigh density data storage at the nanometer/molecular-scale based on electrical bistability has attracted great attention in recent years. The laiest progress in this field is reviewed from the viewpoint of recording material and technology. Future research and development of ultrahigh density data storage is also discussed.
出处 《物理》 CAS 北大核心 2006年第9期773-778,共6页 Physics
基金 国家自然科学基金(批准号:50173028 90201036 20421101)资助项目
关键词 超高密度信息存储 纳米/分子电子学 扫描探针显微镜 ultrahigh density data storage, nano/molecular-electronics, scanning probe microscope
  • 相关文献

参考文献26

  • 1吴惠萌,宋延林,赵彤,江雷,高鸿钧.超高密度信息存储材料及技术研究进展[J].自然科学进展,2002,12(12):1246-1252. 被引量:9
  • 2Ma L P, Song Y L, Gao H J et al. Appl. Phys. Lett., 1996,69 : 3752
  • 3Chu C W, Ouyang J Y, Tseng J H et al. Adv. Mater. , 2005,17 : 1440
  • 4Ma L P, Yang L J, Xue Z Q et al. Appl. Phys. Lett. , 1998,73 : 850
  • 5Wu H M, Song Y L, Zhao T et al. Nanotechnology, 2002,13:733
  • 6Wu H M, Song Y L, Du S X et al. Adv. Mater.,2003, 15:1925
  • 7Jiang G Y, Michinobu T, Yuan W F et al. Adv. Mater. ,2005, 17, 2170
  • 8Ling Q D, Song Y, Ding S J et al. Adv. Mater. , 2005, 17,455
  • 9Dulic D, van der Molen, S J, Kudernac T et al. Phys. Rev.Lett. , 2003, 91, 207402
  • 10Peter A, Branda N R. J. Am. Chem. Soc. , 2003, 125, 3404

二级参考文献5

共引文献8

同被引文献139

  • 1姜桂元,元文芳,温永强,高鸿钧,宋延林.基于扫描探针显微镜(SPM)的高密度信息存储[J].化学进展,2007,19(6):1034-1040. 被引量:3
  • 2ROTH K M, LINDSAY J S, BOCIAN D F, et al. Characterization of charge storage in redox-active self-assembled monolayers [J]. Langmuir, 2002, 18 (10): 4030-4040.
  • 3JIAO J Y, ANARIBA F, TIZNADO H, et al. Stepwise formation and characterization of covalently linked multiporphyrirrimide architectures on Si (100) [J]. Journal of the American Chemical Society, 2006, 128 (21): 6965 -6974.
  • 4PADMAJA K, YOUNGBLOOD W J, WEI L, et al. Triple-decker sandwich compounds bearing compact triallyl tripods for molecular information storage applications [J]. Inorganic Chemistry, 2006, 45 (14): 5479- 5492.
  • 5WILLNER I, KATZ E. Integration of layered redox proteins and conductive supports for bioelectronic applications [J]. Angewandte Chemie International Edition, 2000, 39 (7): 1180-1218.
  • 6LIKHAREV K K. Single-electron devices and their applications [J]. Proceedings of the IEEE, 1999, 87 (4): 606-632.
  • 7JUNG J H, JIN J Y, LEE I, et al. Memory effect of ZnO nanocrystals embedded in an insulating polyimide layer [J]. Applied Physical Letters, 2006, 88 (11): 112107- 112109.
  • 8MORKOC H, TAUR Y. A view of nanscale electronic devices [J]. Journal of the Korean Physical Society, 2003, 42:S555 - S573.
  • 9FEYNMAN R. There is plenty of room at the bottom [J]. Engineering Sciences, 1960, 23 (22): 55-59.
  • 10BINNIG G, ROHRER H, GERBER C H, et al. Tunneling through a controllable vacuum gap [J]. Applied Physics Letters, 1982, 40 (2): 178- 180.

引证文献3

二级引证文献15

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部