期刊文献+

矢量场方向导数和时标正则曲线

Directional Derivative of the Vector Field and Regular Curves on Time Scales
下载PDF
导出
摘要 研究了一类参数方程的曲线,其参变量表示为所谓时标(time scale),该时标是所有实数的集的一个任意闭子集.引入了相应于矢量场的方向导数. The general idea is to study curves where in the parametric equations the parameter varies in a so-called time scale, which may be an arbitrary dosed subset of the set of all real numbers. The directional derivative according to the vector fields was introduced.
机构地区 伊几大学数学系
出处 《应用数学和力学》 CSCD 北大核心 2006年第10期1182-1192,共11页 Applied Mathematics and Mechanics
关键词 时标 矢量微分算子(nabla)导数 正则曲线 切线 矢量场 time scale nabla derivative regular curve tangent line vector field
  • 相关文献

参考文献5

  • 1Aulbach B, Hilger S. Linear dynamic processes with inhomogeneous lime scale[A]. In: Nonlinear Dynamics and Quantum Dynamical Systems[ C]. Berlin:Akademie Verlag, 1990,9-20.
  • 2Ahlbrandt C D, Bohner M, Ridenhour J. Hamiltonian systems on time scales[ J]. J Math Anal Appl,2000,250: 561 -578.
  • 3Hoffacker J. Basic partial dynamic equations on lime scales[ J]. J Difference Equ Appl,2002,8(4) :307-319. (In honor of Professor Lynn Erbe)
  • 4Bohner M, Peterson A. Dynamic Equations on Time Scales-An Introduction With Applications[M]. Boston: Birkhauser, 2001.
  • 5Bohner M, Guseinov G. Partial differentiation on time scales[ J ]. Dynamic Systems and Applications, 2003,12: 351-379.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部