期刊文献+

Motif识别算法简介及软件性能研究 被引量:2

Introduction of Algorithms and Performance Research of Softwares for Motif Discovery
下载PDF
导出
摘要 Motif在转录和后转录水平的基因表达调控中起着重要的作用。目前,识别Motif的算法和相应的软件已有不少,但是却鲜有对各种算法及软件性能共同评测的研究和报告。介绍了算法的分类以及三种常见的Mo-tif识别算法W ordup,MM和G ibbs采样,并对A lignACE,MEME,MotifSampler,W eeder等13种Motif寻找软件进行性能比较分析。通过生物学意义的研究和性能比较结果可以得出:由于唯有W eeder算法考虑了Motif保守核心位置,因而它在各种软件中识别效果较好;大部分算法只考虑简单而且短的Motif,所以各种软件对酵母菌这种单细胞生物的Motif识别性能比多细胞生物要高。 Motif plays a key role in the gene-expression regulating on both transcriptional and post-transcriptional levels. Nowadays there are several algorithms and softwares on detecting Motif, but, however, there is few papers on comparing the performance of these algorithms and softwares. This paper comes up with this background to introduce the classification of the algorithms in general and three common algorithms: Wordup, MM, Gibbs sampling-in details. And a performance comparison is made on the thirteen softwares for Motif detecting such as AlignACE, MEME, MotifSampler, Weeder, etc. Based on the biological research and the performance report, this paper ends with a conclusion that Weeder is the most effective one of these softwares, for it is the only algorithm that takes account of the conserved core positions of Motifs ; Most algorithms only consider simple and short Motifs, so their Motif detecting performance on monadic yeast is significantly higher than on metazoans.
出处 《计算机应用研究》 CSCD 北大核心 2006年第10期66-69,共4页 Application Research of Computers
基金 国家"863"计划资助项目(2002AA104540)
关键词 MOTIF Wordup MM GIBBS采样 Motif Wordup MM(Mixture Model) Gibbs Sampling
  • 相关文献

参考文献7

  • 1Bailey TL,Elkan C.Fitting a Mixture Model by Expectation Maximization to Discover Motifs in Biopolymers[C].Proc.of the 2nd International Conf.Int.Sys.Mol.Biol.,1994.28-36.
  • 2Pesole G,Prunella N,Liuni S,et al.Wordup:An Efficient Algorithm for Discovering Statistically Significant Patterns in DNA Sequences[J].Nucleic Acids Res.,1992,20(11):2871-2875.
  • 3Thijs G,Marchal K,Lescot M,et al.A Gibbs Sampling Method to Detect Over-represented Motifs in Upstream Regions of Coexpressed Genes[J].Journal of Computational Biology(Special Issue Recomb 2001),2001,9(2):447-464.
  • 4Lawrence CE,Altschul SF,Bogouski MS,et al.Detecting Subtle Sequence Signals:A Gibbs Sampling Strategy for Multiple Alignment[J].Science,1993,262:208-214.
  • 5Pavesi G,Mereghetti P,Mauri G,et al.Weeder Web:Discovery of Transcription Factor Binding Sites in a Set of Sequences from Co-regulated Genes[J].Nucleic Acids Res.,2004,32:199-203.
  • 6Tompa M,Li N,Bailey TL,et al.Assessing Computational Tools for the Discovery of Transcription Factor Binding Sites[J].Nature Biotechnology,2005,23:137-144.
  • 7Maximilian Haubler.Motif Discovery in Promoter Sequences[EB/OL].http://www.stud.uni-potsdam.de/%7Ehau ssler/master/masterthesis.pdf.

同被引文献8

引证文献2

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部