摘要
提出了一种非结构网格下求解Euler方程的高分辨率高精度迎风格式。以Roe的矢通量差分分裂为基础,吸收了NND格式的优点,使其具有捕捉激波和滑移线的良好性能;在时间方向上采用Jameson的Runge-Kuta积分,并结合局部最大时间步长和残差光滑技术加速收敛。最后成功地完成了二维平板激波反射、跨音速Laval喷管内的流动和GAMM超音速前台阶绕流等算例。
A High resolution and high order accurate upwind scheme is presented for solving Euler equations on unstructured meshes. The spatial discretization is accomplished by a cell centered finite volume formulation using Roes characteristic based flux difference splitting.High order accuracy is achieved by a multidimensional linear reconstruction process. Solutions are advanced in time by a four stage Runge Kutta time stepping scheme with convergence accelerated to steady state by local time stepping and implicit residual smoothing. This approach ensures good shock capturing properties and produces sharp tangential discontinuities without oscillations. Numerical examples to illustrate the performance of the proposed schemes are given.
出处
《航空学报》
EI
CAS
CSCD
北大核心
1996年第6期658-662,共5页
Acta Aeronautica et Astronautica Sinica
基金
国家自然科学基金
国家教委博士点基金
关键词
喷管
欧拉运动方程
网格生成
有限体积法
Euler equation of motion grid generation (mathematic) finite volume theory Runge Kutta method