期刊文献+

基于危险模型的三级模块式入侵检测系统 被引量:4

Danger model-based three-level-module intrusion detection system
下载PDF
导出
摘要 利用危险理论和数据融合技术,提出一种基于危险模型的三级模块式入侵检测系统,并在第三级模块中提出了一种自适应决策模板算法,实现了检测模板的在线自动修正。系统的优点在于:对于利用现有知识难以给出检测结果的情况,系统将根据是否有危险信号做出判断,不但可减少误报还能改善对未知攻击的识别能力;利用自适应决策模板算法,系统的检测模板能够在线调整,不需要定期更新,使系统能适应行为经常改变的环境,也因此提高了检测未知攻击的能力。基于KDD-CUP-99数据库的实验验证了系统的有效性。 Based on Danger theory and data fusion technology, a new Danger model-inspired three-level-module intrusion detection system was presented. Also, an adaptive decision templates algorithm was derived, realizing the online automatic regulation on detection templates. There are two characteristics of the system. First, when it is difficult to distinguish current behaviors according to the present knowledge, this system will discriminate them by means of danger signals, thus false alarms are reduced and the ability of identifying novel attacks is enhanced. Second, the adaptive decision templates algorithm allows detection templates to modify dynamically without periodical updating, which enables the system to be adapted to a changing environment, and also increases the accuracy on unknown attacks. Experimental results on test data from KDD-CUP-99 database were reported to show the effectiveness of this system.
出处 《计算机应用》 CSCD 北大核心 2006年第10期2310-2314,共5页 journal of Computer Applications
基金 兵器预研支撑基金资助(YJ0467011) 北京理工大学基础研究基金(BITUBF200501F4206)
关键词 危险理论 危险模型 入侵检测 数据融合 danger theory danger model intrusion detection data fusion
  • 相关文献

参考文献9

  • 1MATZINGER P.Tolerance Danger and the Extended Family[J].Annual reviews of Immunology 12,1994,12:991-1045.
  • 2MATZINGER P.The danger model in its historical context[J].Scandinavian Journal of Immunology,2001,54:4 -9.
  • 3MATZINGER P.An innate sense of danger[J].seminars in Immunology,1998,10:399 -415.
  • 4AICKELIN U,BENTLEY P,CAYZER S,et al.Danger theory:The link between AIS and IDS?[A].Proceedings ICARIS -2003,2nd International Conference on Artificial Immune Systems[C].September 2003.147-155.
  • 5GREENSMITH J,AICKELIN U,CAYZER S.Introducing dendritic cells as a novel immune-inspired algorithm for anomaly detection[A].Proceedings ICARIS-2005,4th International Conference on Artificial Immune Systems[C].LNCS,Springer-Verlag,Banff,Canada,2005.153-167.
  • 6GALLUCCI S,MATZINGER P.Danger signals:SOS to the immune system[J].Current Opinion in Immunology,2001,13 (1):114 -119.
  • 7SECKER A,FREITAS A,TIMMIS J.A Danger Theory Inspired Approach to Web Mining[A].Proceedings of the 2nd International Conference on Artificial Immune Systems[C].volume 2787 of Lecture Notes in Computer Science,Springer,September 2003.156 -167.
  • 8AICKELIN U,CAYZER S.The Danger Theory and Its Application to Artificial Immune Systems[A].Proceedings of the 1st International Conference on Artificial Immune Systems (ICARIS-2002)[C].Canterbury,UK,2002.141-148.
  • 9KUNCHEVA LI.Decision templates for multiple classifier fusion:an experimental comparison[J].Pattern Recognition,2001,34(2):299 -314.

同被引文献32

引证文献4

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部