期刊文献+

飞行时间自适应调整的粒子群算法 被引量:10

Particle swarm optimization with flying time adaptively adjusted
下载PDF
导出
摘要 为改善粒子群优化算法的搜索性能,提出一种飞行时间自适应调整的粒子群算法(FAA-PSO)。该算法在粒子群进化过程中随着进化代数增大自适应调整粒子的飞行时间,从而克服了传统粒子群算法中粒子飞行时间固定为1导致的粒子在迭代后期搜索性能下降的困难。数值结果表明,该算法有利于加速收敛,提高收敛精度。 To improve the searching performance of Particle Swarm Optimization (PSO), a modified PSO algorithm with flying time adaptively adjusted was proposed and named FAA-PSO algorithm. The flying time of every particle in this algorithm was adaptively adjusted in pace with addition of the evolutionary generations; Thus, the algorithm overcomes the difficulty of the traditional PSO that the searching ability of particle is decreasing during the later time of iteration, which is caused by that the flying time of every particle is fixed on one. Numerical results show that this algorithm is of advantage to accelerate convergence and improve calculation accuracy.
出处 《计算机应用》 CSCD 北大核心 2006年第10期2513-2515,共3页 journal of Computer Applications
基金 陕西省自然科学研究项目(2003A09)
关键词 粒子群算法 进化算法 优化 Particle Swarm Optimization(PSO) evolutionary computation optimization
  • 相关文献

参考文献10

  • 1EBERHART R,KENNEDY J.A new optimizer using particle swarm theory[J].In:Proc of the 6th Int'l Symposium On Micro Machine and Human Science.Piscataway.NJ:IEEE Service Center 1995,39-43.
  • 2KENNEDY J,EBERHART R.Particle Swarm Optimization[A].Proc IEEE Int Conf Neural Networks[C].Piscataway:IEEE Press,1995.1942-1948.
  • 3PARSOPOULOS RE,VRAHATIS MN.On Computation of all Global Minimizes through Particle Swarm Optimization[J].IEEE,Transactions on Evolutionary Computation,2004,8 (3):211-223.
  • 4VOSS MS,FENG X.ARMA Model Selection Using Particle Swarm Optimization and AIC Criteria[A].15th Triennial World Congress[C].Barcelona,Spain:IFAC,2002.
  • 5VAN DEN BERGH F,ENGELBRECHT AP.Cooperative Learning In Neural Networks Using Particle Swarm Optimization[J].South African Computer Journal,2000,(11):84 -90.
  • 6SHI Y,EBERHART R.A Modified Particle Swarm Optimizer[A].In:Proceedings of the IEEE International Conference on Evolutionary Computation[C].Piscataway,NJ:IEEE Press,1998.69 -73.
  • 7EBERHART R,SHI YH.Comparing Intertia Weights and Constriction Factors In Particle Swarm Optimization[A].Proc 2000 Congress on Evolutionary Computation[C].IEEE Press,2000.84-88.
  • 8LOVBJERG M,RASMUSSEN TK,KRINK T.Hybrid Particle Swarm Optimizer with Breeding and Subpopulation[A].Proc of the 3rd Genetic and Evolutionary Computation Conference[C].Sanfrancisco,2001.469-476.
  • 9陈国初,俞金寿.增强型微粒群优化算法及其在软测量中的应用[J].控制与决策,2005,20(4):377-381. 被引量:31
  • 10CLERC M.The Swarm and the Queen:Towards a Deterministic and Adaptive Particle Swarm Optimization[J].In Proc.CEC 1999.1999:1951-1957.

二级参考文献8

  • 1Shi Y, Eberhart R C. A modified particle swarm optimizer [A]. Proc IEEE Int Conf on Evolutionary Computation[C]. Anchorage, 1998: 69-73.
  • 2Thompson M L, Kramer M A. Modeling chemical process using prior knowledge and neural networks[J]. AIChE J,1994,40(8): 1328-1340.
  • 3Kennedy J, Eberhart R C. Particle swarm optimization[A]. Proc IEEE Int Conf on Neural Networks[C]. Perth, 1995: 1942-1948.
  • 4Eberhart R C, Kennedy J. A new optimizer using particle swarm theory[A]. Proc the Sixth Int Symp on Micro Machine and Human Science[C]. Nagoya, 1995: 39-43.
  • 5Eberhart R C, Shi Y. Particle swarm optimization: Developments, applications and resources[A]. Proc 2001 Congress on Evolutionary Computation [C]. Seoul, 2001: 81-86.
  • 6Parsopoulos K E, Vrahatis M N. Recent approaches to global optimization problems through particle swarm optimization[J]. Natural Computing, 2002: 235-306.
  • 7Claudia O Ourique, Evaristo C Biscaia, Jr Jose Carlos Pinto. The use of particle swarm optimization for dynamical analysis in chemical processes[J]. Computers and Chemical Engineering,2002,26: 1783-1793.
  • 8焦李成.神经网络系统理论[M].西安:西安电子科技大学出版社,1995..

共引文献30

同被引文献79

引证文献10

二级引证文献53

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部