期刊文献+

基于核方法的彩色图像量化研究 被引量:1

Color image quantization algorithm based on Kernel method
下载PDF
导出
摘要 彩色图像量化是指将一幅具有N种颜色的图像用K(K N)种颜色替换,并使替换后的图像与原图像尽可能接近。文中提出了一种基于核方法的彩色图像量化算法———KCIQ,KCIQ使用核函数将低维输入空间的样本向高维特征空间映射,使得非线性问题变为线性问题。核函数的引入使得不用计算样本在特征空间的具体位置,而只需计算输入空间样本的内积,因而,计算量增加不大。实验表明,该算法对“万绿丛中一点红”这样的特殊图像具有较好的效果,而对普通图像也有和K-均值类似的效果。 CIQ(Color image quantization) refers to the process of replacing N colors in an image with K colors, and making the new image is as much as close to the original one. This paper introduced a KCIQ(Kernel Color Image Quantization) algorithm based on K-means clustering. By using kernel method, data from low-dimensional input space can be mapped to high-dimensional feature space, so that no-linear problem may become linear one in feature space. Since this method involves only inner products of data in input space, it can be evaluated much more efficiently even with no knowledge of mapped data in feature space, Our experiments show that KCIQ performs better than K-means on special image, which includes one important color but with only a few data, and KCIQ has almost the same performance as K-means when working on common images.
出处 《计算机应用》 CSCD 北大核心 2006年第9期2063-2064,2083,共3页 journal of Computer Applications
关键词 彩色图像量化 核方法聚类 核K-均值 CIQ(Color Image Quantization) kernel method kernel c-means
  • 相关文献

参考文献2

  • 1ZHOU B, SHEN JY, PENG QK. An adjustable algorithm for color quantization[ J]. Pattern recognition letters, 2004, 25( 16): 1787 -1797.
  • 2孔锐,张国宣,施泽生,郭立.基于核的K-均值聚类[J].计算机工程,2004,30(11):12-13. 被引量:46

二级参考文献4

  • 1[1]Vapnik V N. The Nature of Statistical Learning Theory. Springer Verlag New York, 1995
  • 2[2]Scholkopf B, Smola A, Muller K. Non-linear Component Analysis as a Kernel Eigenvalue Problem. Neural Network,1998:1299-1319
  • 3[3]Muller K, Mika S, Ratsch G, et al. An Introduction to Kernel-based Learning Algorithms. IEEE Trans. on Neural Networks ,2001
  • 4[4]Sch lkopf B. The Kernel Trick for Distances. Technical Report MSR- TR-2000-51, 19 May 2000.

共引文献45

同被引文献12

  • 1JIA Y Q,WANG J D,ZHANG C S,et al.Finding image exemplar-susing fast sparse affinity propagation[C]//Proceedings of the 13thAnnual ACM International Conference on Multimedia.New York:ACM Press,2008:639-642.
  • 2JING Y,BALUJA S.Pagerank for product image search[C]//Pro-ceedings of ACM WWW'08.New York:ACM Press,2008:307-316.
  • 3CAI D,HE X,LI Z,et al.Hierarchical clustering of WWW imagesearch results using visual,textual and link information[C]//Pro-ceedings of the 12th Annual ACM International Conference on Multi-media.New York:ACM Press,2004:952-959.
  • 4WANG L,ZHANG Y,FENG J.On the Euclidean distance of ima-ges[J].IEEE Transactions on Pattern Analysis and Machine Intelli-gence,2005,27(8):1334-1339.
  • 5AHN Y Y,BAGROW J P,LEHMANN S.Link communities revealmultiscale complexity in networks[J].Nature,2010,466(7307):761-764.
  • 6EVANS T S,LAMBIOTTE R.Line graphs,link partitions and over-lapping communities[J].Physical Review E,2009,80(1):016105.
  • 7KALINKA A T,TOMANCAK P.Linkcomm:An R package for thegeneration,visualization,and analysis of link communities in net-works of arbitrary size and type[J].Bioinformatics,2011,27(14):2011-2012.
  • 8谷瑞军,叶宾,须文波.基于谱聚类的两阶段颜色量化算法[J].中国图象图形学报,2007,12(10):1922-1925. 被引量:5
  • 9唐敏,阳爱民.一种高效的图像数据库检索方法[J].计算机应用,2008,28(6):1454-1456. 被引量:4
  • 10路晶,马少平.基于多例学习的Web图像聚类[J].计算机研究与发展,2009,46(9):1462-1470. 被引量:6

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部