期刊文献+

结合支持向量机与C均值聚类的图像分割 被引量:9

Image segmentation combining support vector machines with C-means
下载PDF
导出
摘要 针对支持向量机进行图像分割时需要用户设定训练样本问题,提出一种根据图像特征使用C均值聚类算法自动获取支持向量机训练样本的方法。首先将图像分成几个区域,对每个区域利用小波分解去掉含有图像边缘的区域,然后对剩余的平滑区域计算能量均值作为特征值,使用C均值聚类算法对平滑区域分类,将特征值与类别标记作为支持向量机的训练样本,最后用训练后的分类器对图像进行分割。实验结果表明提出的方法取得了很好的分割结果,同时用一幅有代表性的图像进行支持向量机训练,所产生的分类器可以应用于所有该类图像,因此可以很容易应用到体数据的分割中。 Image segmentation based on support vector machines (SVM) requires the user to provide the training data. The proposed method in this paper used C-means to obtain feature vectors and labels for training SVM. Firstly, image was divided into several regions and discrete wavelet transform was performed on each region in order to remove edged region. Secondly, after applying C-means to smooth region classification, the energy of region and labels were taken as training data of SVM(Support Vector Machine). Finally, image segmentation was performed using SVM classifier. Experimental results show that the method has good performance in image segmentation. Meanwhile, using one representative image for the training of SVM, the produced classifier can be applied to the set of similar images and 3D volume data.
出处 《计算机应用》 CSCD 北大核心 2006年第9期2081-2083,共3页 journal of Computer Applications
关键词 图像分割 支持向量机 C均值聚类 image segmentation SVM(Support Vector Machine) C-means
  • 相关文献

参考文献8

  • 1GOMEZ-MORENO H, GIL-JIMENEZ P, LAFUENTE-ARROYO S,et al. Color images segmentation using the Support Vector Machines[ A]. Recent Advances in Intelligent Systems and Signal Processing[ C]. USA: WSES Press, 2003. 151 - 155.
  • 2潘晨,闫相国,郑崇勋,梁成文.利用单类支持向量机分割血细胞图像[J].西安交通大学学报,2005,39(2):150-153. 被引量:12
  • 3陈强,周则明,屈颖歌,王平安,夏德深.左心室核磁共振图像的自动分割[J].计算机学报,2005,28(6):991-999. 被引量:9
  • 4张国宣 孔锐 施泽生.一种新的结合纹理特征的SVM图像分割方法.中国图象图形学报,2003,8:441-444.
  • 5RAJPOOT KM, RAJPOOT NM. Wavelets and Support Vector Machines for Texture Classification[ A]. Proceedings of 8th IEEE International Mulfitopic Conference[ C], 2004. 328 - 333.
  • 6VapnikVN.统计学习理论的本质[M].北京:清华大学出版社,2000..
  • 7罗述谦 周果宏.医学图像处理与分析[M].北京:科学出版社,2003..
  • 8PELCLMANS K , SUYKENS JAK , VAN GESTEL T , et al.LS-SVMlab Toolbox User's Guide [ EB/OL]. http://www.esat.kuleuven.ac. be/sista/lssvmlab/tutorial/tutoriall_5.pdf.

二级参考文献27

  • 1Garbay C. Image structure representation and processing: a discussion of some segmentation methods in cytology[J]. IEEE Trans on Pattern Analysis and Machine Intelligence, 1986, 8(2) : 140-146.
  • 2Cheng H D, Jiang X H, Sun Y, et al. Color image segmentation: advance and prospects [J]. Pattern Recognition, 2001,34(10): 2 259-2 281.
  • 3Ruberto C D, Dempster A, Khan S, et al. Analysis of infected blood cell images using morphological operators[J]. Image and Vision Computing, 2002, 20(2).-133-146.
  • 4Tax D, Duin R. Data domain description by support vectors [A]. Verleysen M. Proceedings of the European Symposium on Artificial Neural Networks [C].Brussels: Facto D Press, 1999.
  • 5Comaniciu D, Meer P. Mean shift: a robust approach toward feature space analysis [J]. IEEE Trans on Pattern Analysis and Machine Intelligence, 2002, 24 (5):603-619.
  • 6Lezoray O, Elmoataz A, Cardot H, et ak Segmentation of color images from serous cytology for automated cell classification[J]. Analytical and Quantitative Cytology and Histology, 2000, 22(4): 311-322.
  • 7Witkin K.A., Terzopoulos D. Snake: Active contour models. International Journal of Computer Vision, 1988, 1(4): 321~331
  • 8Osher S., Sethian J.A. Fronts propagation with curvature-dependent speed: Algorithms based on Hamilton-Jacobi formulation. Journal of Computational Physics, 1988, 79(1): 12~49
  • 9Vapnik V. The Nature of Statistical Learning Theory. New York: Springer-Verlag, 1995
  • 10Scholkopf B., Simard P., Smola A., Vapnik V. Prior knowledge in support vector kernels. In: Proceedings of the Neural Information Processing Systems, Denver, Colorado, United States, 1997, 640~646

共引文献286

同被引文献44

引证文献9

二级引证文献13

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部