期刊文献+

一种新的冷轧带钢典型表面缺陷特征提取方法 被引量:2

A New Feature Extraction Method of Cold Steel Strip Typical Surface Defects
下载PDF
导出
摘要 针对冷轧带钢表面缺陷图像特征提取的特点,提出了基于类距离可分离性判据的混合特征提取方法。该方法以小波变换的L1范数特征和灰度共生矩阵二次统计特征为基础,运用基于类距离的可分离性判据原理提取出可分离性特征向量。对几种生产现场出现频率较高、危害严重的典型缺陷进行了计算机实验研究,实验结果表明,运用基于类距离可分离性判据的混合特征提取方法提取的特征向量具有较大的可分离性,很大程度上提高了特征的分类有效性,使缺陷识别取得了较高的正确识别率。 Aiming at the characteristic in feature extraction of cold steel strip surface defect images,a mixed feature extraction method of separable criterion based on class distance is proposed.The method is based on wavelet transform L1 norm feature and secondary statistic feature of gray level co-occurrence matrix,extracts the separable feature vector according to the separable criterion theory based on class distance.Experimental investigations are carried out on computer aiming at several typical defects which are serious and excessive at the locale,the results show that the mixed feature extraction method of separable criterion based on class distance can get the more separable feature vectors, increase validity of classification of feature greatly,and get a higher correct recognition rate of defects.
出处 《计算机工程与应用》 CSCD 北大核心 2006年第27期184-186,190,共4页 Computer Engineering and Applications
基金 国家自然科学基金资助项目(编号:50574019) 国家科技部重大基础研究前期研究专项资金资助项目(编号:2003CCA03900)
关键词 冷轧带钢 表面缺陷 特征提取 可分离性判据 混合特征 cold steel strip,surface defect,feature extraction,separable criterion,mixed feature
  • 相关文献

参考文献6

  • 1Arivazhagan S,Ganesan L.Texture classification using wavelet transform[J].Pattern Recognition Letters,2003;24:1513~1521
  • 2Wang X C,Paliwal K K.Feature extraction and dimensionality reduction algorithms and their applications in vowel recognition[J].Pattern Recognition,2003; 36:2429~2439
  • 3Zhang H,Cartwright C M,Ding M S et al.Image feature extraction with various wavelet functions in a photorefractive joint transform correlator[J].Optics Communications,2000; 185:277~284
  • 4吴平川,路同浚,王炎.带钢表面自动检测系统研究现状与展望[J].钢铁,2000,35(6):70-75. 被引量:35
  • 5徐科,徐金梧,班晓娟.冷轧带钢表面质量自动监测系统的模式识别方法研究[J].钢铁,2002,37(6):28-31. 被引量:14
  • 6Wu Y,Du R.Feature extraction and assessment using wavelet packets for monitoring of machining processes[J].Mechanical Systems and Signal Processing,1996; 10(1):29~53

二级参考文献6

共引文献47

同被引文献27

  • 1吴贵芳,徐科,徐金梧.基于LVQ神经网络的冷轧带钢表面缺陷分类方法[J].北京科技大学学报,2005,27(6):732-735. 被引量:8
  • 2王成明,颜云辉,陈世礼,韩英莉.基于改进支持向量机的冷轧带钢表面缺陷分类识别[J].东北大学学报(自然科学版),2007,28(3):410-413. 被引量:12
  • 3李骏,颜云辉,王成明,魏天宇.板带材缺陷检测中的多特征优化组合方法研究[J].计算机工程与应用,2007,43(22):197-200. 被引量:2
  • 4Aitkenhead M J. A Co- evolving Decision Tree Classification Method [J]. Expert Systems with Applications, 2008,34(1) : 18-25.
  • 5Arivazhagan S, Ganesan L. Texture Classification Using Wavelet Transform[J]. Pattern Recognition Letters, 2003,24(9/10):1513-1521.
  • 6Kohonen T, Somervuo P. How to Make Large Self--organizing Maps for Nonvectorial Data[J]. Neural Networks, 2002,15 (8/9) : 945-952.
  • 7Kohonen T,Oja E. Visual Feature Analysis by the Self--organising Maps[J]. Neural Comput & Applications , 1998,7(3) :273-286.
  • 8Giraudel J L, Lek S. A Comparison of Self--organizing Map Algorithm and Some Conventional Statistical Methods for Ecological Community Ordination[J]. Ecological Modelling,2001, 146(1/3) :329 -339.
  • 9John C B, Scan T E. Automated Surface Inspection System[J]. Iron and Steel Engineer, 1996,73(3): 48-51.
  • 10Suresh B R,Fundakowski R A,Levitt T S,et al. A Real--time Automated Visual Inspection System for Hot Steel Slabs[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1983 (6): 563-572.

引证文献2

二级引证文献6

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部