期刊文献+

基于径向基函数网络的MH/Ni电池荷电状态预测 被引量:4

Modeling and estimation of SOC of MH/Ni battery by radial basis function neural network
下载PDF
导出
摘要 电动车电池管理系统的核心任务是对电池荷电状态(SOC)进行预测.在分析了MH/Ni电池充放电反应机理的基础上,应用径向基函数(RBF)神经网络建立了预测MH/Ni电池荷电状态的模型,并且应用该模型对电池放电过程中某一状态下的荷电状态进行预测.该模型预测速度快,并且预测值与试验值吻合.人工神经网络建模技术简单直观,是预测MH/Ni电池SOC有力工具. Prediction of the state of charge (SOC) of MH/Ni battery is very important for battery management system of electric vehicles. Through discussing the electrochemistry of MH/Ni system, a model based on radial basis function (RBF) neural network was employed to predict the state of charge of MH/Ni battery. The model was used to predict the state of charge at a certain state of discharging process. The proposed model had high prediction speed. The predicted SOC closely resembled the measured value. Artificial neural network technique is simple and understandable. It is a powerful tool to estimate the SOC of MH/Ni battery.
作者 张森
出处 《化工学报》 EI CAS CSCD 北大核心 2006年第9期2162-2166,共5页 CIESC Journal
关键词 荷电状态 径向基函数 神经网络 MH/NI电池 state of charge radial basis function artificial neural network MH/Ni battery
  • 相关文献

参考文献7

  • 1Soria M L,Chacon J,Hernandez J C,Moreno D,Ojeda A.Nickel metal hydride batteries for high power applications.J.Power Sources,2001,96(1):68-75
  • 2Yang X G,Liaw B Y.Fast charging nickel-metal hydride traction batteries.J.Power Sources,2001,101(2):158-166
  • 3Wu B,White R E.A procedure for serial simulation of electrochemical processes:cycling of electrodes and batteries.J.Power Sources,2001,92(1/2):177-186
  • 4彭永臻,王之晖,王淑莹.基于BP神经网络的A/O脱氮系统外加碳源的仿真研究[J].化工学报,2005,56(2):296-300. 被引量:12
  • 5Zhang Zhixing(张智星),Sun Chunzai(孙春在),Shuiguyinger(水谷英二).Neural-Fuzzy and Soft Computation(神经-模糊和软计算).Xi'an:Xi'an Jiaotong University Press,2002.167-169.
  • 6Cong shuang(从爽).Neural Network,Fuzzy System and Their Application in Motion(神经网络、模糊系统及其在运动中的应用).Hefei:University of Science and Technology of China Press,2001:80-83
  • 7Zha Quanxing(查全性).An Introduction to Kinetics in Electrode Process(电极过程动力学导论).Beijing:Science Press,2002:398-401

二级参考文献9

  • 1张光澄.最优化计算方法[M].成都:成都科技出版社,1981..
  • 2Samuelsson P, Carlsson B. Feedforward control of the external carbon flow rate in an activated sludge process. Wat. Sci. Tech.,2001, 43(1): 115-122.
  • 3Cho J H, Sung S W, Lee I B. Cascade control strategy for external carbon dosage in predenitrifying process. Wat. Sci. Tech.,2002,45(4-5): 53-60.
  • 4Barros P R, Carlsson B. Iterative design of a nitrate controller using an external carbon source in an activated sludge process. Wat. Sci. Tech.,1998, 37(12): 95-102.
  • 5Lindberg C F, Carlsson B. Adaptive control of external carbon flow rate in an activated sludge process. Wat. Sci. Tech.,1996,34(3-4):173-180.
  • 6Marsili Libell S, Giunti L. Fuzzy predictive control for nitrogen removal in biological wastewater treatment. Wat. Sci. Tech.,2002,45(4-5): 37-44.
  • 7Fu Chunsheng, Manel Poch. Fuzzy model and decision of COD control for an activated sludge process. Fuzzy Sets and Systems,1998,93:281-292.
  • 8国际水协废水生物处理设计与运算数学模型课题组.活性污泥数学模型ASM1, ASM2 and ASM3[M].Shanghai: Tongji University Press,2002..
  • 9杜泽超,孙光伟,索胜军.前向神经网络学习算法研究[J].哈尔滨建筑大学学报,2001,34(1):94-96. 被引量:3

共引文献11

同被引文献39

引证文献4

二级引证文献18

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部