期刊文献+

基于分块FLD的图像特征提取方法 被引量:2

Image Feature Extracting Approach Based on Blocked FLD
下载PDF
导出
摘要 提出了基于分块Fisher线性鉴别(FishersLinearDiscriminant,FLD)的特征提取方法,先对图像矩阵进行分块,将分块得到的子图像矩阵直接用来构造类内和类间离散度矩阵,然后利用Fisher鉴别函数取极大值时得到的最优投影方向进行图像的特征提取。分块FLD方法是二维FLD方法的推广,该方法可以提取每一单元块的局部特征,在ORL人脸库上的实验结果表明该方法在人脸识别性能方面优于二维FLD方法。 A feature extraction technique called blocked FLD is presented. First, the original images are divided into sub-images in proposed approach. Then, between-class and within-class scatter matrixes are constructed directly using the sub-images, and when the Fisher's linear discriminant function reach the maximum, its optimal projection direction are derived for image feature extraction. 2D FLD is the special case of blocked FLD in which local feature can be extracted from each sub-image. To test blocked FLD and evaluate its performance, an experiment was performed on ORL human face database. The experimental results indicated that the recognition performance of blocked FLD is superior to that of 2D FLD.
出处 《科学技术与工程》 2006年第19期3107-3110,共4页 Science Technology and Engineering
关键词 FISHER线性鉴别 特征提取 人脸识别 Fisher's linear discriminant feature extraction face recognition
  • 相关文献

参考文献3

二级参考文献35

  • 1杨健,杨静宇,叶晖.Fisher线性鉴别分析的理论研究及其应用[J].自动化学报,2003,29(4):481-493. 被引量:97
  • 2[1]Wilks S S. Mathematical Statistics. New York: Wiley Press, 1962. 577~578
  • 3[2]Duda R, Hart P. Pattern Classification and Scene Analysis. New York: Wiley Press, 1973
  • 4[3]Daniel L Swets, John Weng. Using discriminant eigenfeatures for image retrieval. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1996,18(8): 831~836
  • 5[4]Belhumeur P N. Eigenfaces vs. Fisherfaces: Recognition using class specific linear projection. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1997, 19(7): 711~720
  • 6[5]Cheng Jun Liu, Harry Wechsler. A shape- and texture-based enhanced Fisher classifier for face recognition. IEEE Transactions on Image Processing, 2001, 10(4): 598~608
  • 7[6]Foley D H, Sammon J W Jr. An optimal set of discriminant vectors. IEEE Transactions on Computer, 1975, 24(3): 281~289
  • 8[7]Tian Q. Image classification by the Foley-Sammon transform. Optical Engineering, 1986, 25(7): 834~839
  • 9[8]Duchene J, Leclercq S. An optimal Transformation for discriminant and principal component analysis. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1988,10(6): 978~983
  • 10[9]Zhong Jin, Yang J Y, Hu Z S, Lou Z. Face Recognition based on uncorrelated discriminant transformation. Pattern Recognition, 2001,33(7): 1405~1416

共引文献165

同被引文献9

引证文献2

二级引证文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部