期刊文献+

一类不确定时滞系统的脉冲控制 被引量:1

Impulsive Control for a Class of Uncertain Systems with Time Delay
下载PDF
导出
摘要 在实际系统中总是存在着各种干扰和一定的时滞。针对一类带非线性扰动不确定时滞系统,采用脉冲控制的方法来实现鲁棒镇定,提出本系统在脉冲控制下新的鲁棒可镇定的充分条件。 Perturbations of varied nature and time delays are unavoidable in real systems. The use of impulsive control for robust stabilization for a class of uncertain systems with time delays and nonlinear perturbations is discussed in this paper, and some new sufficient conditions of robust stabilization under impulsive control are given.
出处 《武汉科技大学学报》 CAS 2006年第5期517-519,540,共4页 Journal of Wuhan University of Science and Technology
基金 国家自然科学基金资助项目(60574042)
关键词 非线性扰动 不确定时滞系统 脉冲控制 鲁棒镇定 nonlinear perturbation uncertain system with time delay impulsive control robust stabilization
  • 相关文献

参考文献12

二级参考文献19

  • 1[1]Mehdi D, A H Mohammed, P Francois. Robustnees and optimalit y of linear quadratic controller for uncertain systems. Automatica, 1996, 32: 10 81-1083
  • 2[2]Anderson B D O, J B Moore. Optimal control: Linear quadratic methods. NJ: Prentice Hall, 1989
  • 3[1]Boudart M. Kinetics of Chemical Processes[M]. Englewood Cliffs. Nj: Pretice-Hall, 1968.
  • 4[2]Eman T I. O Nekotoryh Mstematiceskih Modeliah Biogeocenozov[J]. Problemy Kibernetiki, Moskva, lzd,1966, 16, 191-202.
  • 5[3]Lakshmikantham V, Bainov D D, Simeonov P S. Theory of Impulsive Differential Equations[M]. Singapore:World Scientific, Singapore, 1989.
  • 6[4]Drumi Bainov, Pavel Simeonov. Impulsive Differential Equations[M]. New York: World Scientific, 1989,57-127.
  • 7[5]Tao Yang. Impulsive Systems and Control. Theory and Applications[M]. Nova Science Publishers, Inc. New York: Huntington, 2001.
  • 8[6]Jitao Sun, Yinping Zhang, QiDi Wu. Impulsive control for the stabilization and synchronization for the Lorenz systems[J]. Phys letters A, 2002, 298(2):153-160.
  • 9[7]Jitao Sun, Yinping Zhang, Wang Lei, et al. Impulsive robust control of uncertain Lur'e systems[J]. Phys letters A, 2002, 304(2):130-135.
  • 10[8]Jitao Sun, Yinping Zhang. Impulsive control of a nuclear spin generator[J]. J of Computational and Appl Math, 2003, 157(1):235-242.

共引文献42

同被引文献8

  • 1刘芬,王仁明,李寒生,曾晓.统一混沌系统的脉冲切换控制[J].中原工学院学报,2006,17(2):46-48. 被引量:1
  • 2马铁东,张化光.参数不确定统一混沌系统的脉冲控制[J].东北大学学报(自然科学版),2007,28(7):917-920. 被引量:3
  • 3Yassen M T. Chaos control of chaotic dynamical systems using back stepping design [J ] . Chaos Solitons and Fractals, 2006, 27 (2) :537-548.
  • 4Sun J T, Zhang Y P , Wang L , et al . Impulsive robust control of uncertain Lure systems [ J ] . Physics Letters A, 2002, 304 (5/ 6) :130-135.
  • 5Chen D L , Sun J T , Huang C S. Impulsive control and synchronization of general chaotic system [J ] . Chaos Solitons and Fractals, 2006, 28 (1) :213-218.
  • 6LuJ H ,Chen G R , Cheng D Z , et al . Bridge the gap between the Lorenz system and Chen system [J] .International Journal of Bifurcation and Chaos , 2002 , 12(12) :2917-2926.
  • 7Lakshmikantham V, Bainov D D, Semieonov P S. Theory of Impulsive Differential Equations [M]. Singapore: World Scientific, 1989.
  • 8王雪梅,王帅.统一混沌系统及其在安全通信中的应用[J].微计算机信息,2007(05X):57-58. 被引量:3

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部