期刊文献+

多变量自适应PID型神经网络控制器及其设计方法 被引量:9

Multivariable Adaptive PID-like Neural Network Controller and Its Design Method
下载PDF
导出
摘要 提出一种PID型神经网络控制器(PID-like Neural Network Controller,PIDNNC)及其设计方法.基于PID的简单结构和良好性能优势以及神经网络的自调节和自适应的特长,创建一种具有PID结构的多变量自适应的PID型神经网络控制器.该网络控制器的隐含层由带有输出反馈和激活反馈的混合局部连接递归网络组成.通过定义误差函数作为设计目标,采用弹性BP算法,并用变化率以及弹性BP算法中的符号法来处理某些求导关系,获得适于实时在线调整网络权值的修正公式.根据李亚普诺夫稳定性定理推导出确保控制系统稳定的学习速率的取值范围.最后通过实例进一步说明所提出网络控制器的优越性.* A PID-like Neural Network Controller (PIDNNC) and its design method are proposed. Based on the advantages of simple construction and good property in PID and self-regulation and adaptivity of neural networks, a muhivariable adaptive neural network controller with PID structure is created. It is composed of a hybrid locally connected recurrent network with an activation feedback and an output feedback respectively in the hidden layer. By means of defining error function as the design objective, using resilient back-propagation (BP) algorithm and changing rate and sign in resilient BP algorithm, some differential relations are dealt with. The modified formula for online updating network weights is obtained. Lyapunov stability principle is used to derive the range of learning rate to ensure control system stability. Finally, numerical examples are given to show advantages of the proposed controller.
出处 《信息与控制》 CSCD 北大核心 2006年第5期568-573,共6页 Information and Control
基金 国家自然科学基金资助项目(50375148)
关键词 多变量控制系统 神经网络 PID控制器 自适应算法 神经控制系统设计 muhivariable control system neural network PID controller adaptive algorithm neural control system design
  • 相关文献

参考文献7

  • 1Grimble M J.Controllers with a PID structure[J].Journal of Dynamic Systems,Measurement and Control,Transactions ASME,1990,112(3):325 ~330.
  • 2Chen B S,Chiang Y M,Lee C H.A genetic approach to mixed optimal PID control[J].IEEE Control System s Magazine,1995,15(5):51~56.
  • 3Bao J,Forbes J F,McLellan P J.Robust multiloop PID controller design:a successive semidefinite programming approach[J].Industrial and Engineering Chemistry Research,1999,38 (9):3407~3413.
  • 4Hunt K J,Sbarbaro D,Zbikowski R,et al.Neural networks for control systems-a survey[J].Automatica,1992,28(6):1083~1112.
  • 5丛爽.典型人工神经网络的结构、功能及其在智能系统中的应用[J].信息与控制,2001,30(2):97-103. 被引量:27
  • 6Song Q,Xiao J Z,Chai S.Robust backpropagation training algorithm for multilayered neural tracking controller[J].IEEE Transactions on Neural Networks,1999,10(5):1133 ~1141.
  • 7Ku C C,Lee K Y.Diagonal recurrent neural networks for dynamic systems control[J].IEEE Transactions on Neural Networks,1995,6(1):144~156.

二级参考文献1

  • 1丛爽,面向MATLAB工具箱的神经网络理论与应用,1998年

共引文献26

同被引文献43

引证文献9

二级引证文献37

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部