摘要
在较弱的条件下,我们研究了Banach空间中二阶脉冲积分-微分方程初值问题解的存在性,建立了解的存在定理,本质地改进了郭大钧的相关结果.同时,利用非紧性测度还给出了存在最大最小解的一个充分条件.
Under rather weak conditions, the existence of solutions to initial value problem is studied for the second order impulsive integro-differential equations in Banach spaces. Some existence theorems of solutions are established, and the related results by Guo Dajun are essentially improved. At the same time, one sufficient condition for the existence of minimal and maximal solutions is obtained through the Kuratowski measure of noncompactness.
出处
《系统科学与数学》
CSCD
北大核心
2006年第5期569-577,共9页
Journal of Systems Science and Mathematical Sciences
基金
国家自然科学基金(10572057)资助.
关键词
脉冲积分-微分方程
初值问题
比较结果
非紧性测度
不动点
Impulsive integro-differential equation, initial value problem, comparison result, measure of noncompactness, fixed-point.