期刊文献+

使用变换域编码技术压缩SAR原始数据 被引量:1

Compression of SAR Raw Data by Transform Domain Coding Techniques
下载PDF
导出
摘要 首先分析了在合成孔径雷达(SAR)原始数据中通常使用的块自适应量化(BAQ)算法,然后在此基础上详细讨论了两种基于块自适应量化的变换域编码算法,即基于快速傅里叶变换块自适应量化(FFT-BAQ)和基于小波变换块自适应量化(WT-BAQ),并对这两种算法压缩得到数据解压缩获得图像与块自适应量化得到的图像进行分析比较,结果显示变换域编码技术能改善SAR原始数据压缩性能。 The block adaptive quantization (BAQ) for compressing the synthetic aperture radar(SAR) raw data is analysed. Then transform domain algorithms based on BAQ, the fast Fourier transform block adaptive quantization ( FFT - BAQ) and the wavelet transform block adaptive quantization ( WT - BAQ), are investigated in detail. With the comparison of quality parameters computed on the image, the FFT - BAQ and WT- BAQ show an increased performance in the compression method with respect to the BAQ.
出处 《电讯技术》 2006年第5期122-126,共5页 Telecommunication Engineering
关键词 合成孔径雷达 块自适应量化 小波变换 变换域编码 synthetic aperture radar (SAR) BAQ wawelete transform transform domain coding
  • 相关文献

参考文献9

  • 1R Kwok. Adaptive Quantization of Magellan SAR Data[ J]. IEEE Transactions on Geo- science and Remote Sensing, 1989,27 (4) :375 - 383.
  • 2郑伟强,赵志钦,黄顺吉.合成孔径雷达极坐标数据编码器[J].电子科技大学学报,1997,26(1):20-23. 被引量:2
  • 3Magli Enrico, Gabriella Olmo. Lossy Predictive coding of SAR Raw Data[ J ]. IEEE Transactions on Geo - science and Remote Sensing, 2003,41 (5) :977 -987.
  • 4A Moreira, F Blaeser. Fusion of block adaptive and vector quantizer for efficient SAR data compression [ C ]//.IGARSS. Tokyo, 1993 : 1583 - 1585.
  • 5J W Owens, M W Marcellin, B R Hunt, et al. Compression of synthetic aperture radar video phase history data using trellis - coded quantization techniques [ J ]. IEEE Trans. Geosci. Remote Sensing, 1999,37 (3) : 1080 -1085.
  • 6Ursula Benz, Klaus Strodl, Alberot Moreia. A Comparison for SRA Raw Data Compression [ J ]. IEEE Transactions on geoscience and remote sensing, 1995,33 (5):1266 - 1276.
  • 7Vito Pascazio, Gilda Schirinzi. SRA Raw Data Compression by Subband Coding[ J]. IEEE Transactions on geoscience and remote sensing, 2003,41 (5) :964-976.
  • 8S Mallat, F Falzon. Analysis of low bit rate image transform coding[J]. IEEE Trans. Signal Processing, 1998,46(4) :1027 - 1042.
  • 9T W Ryan, L D Sanders, H D Fisher, et al. Image Compression by texture modeling in the Wavelet Domain[J].IEEE Trans. On Image Proc, 1996,5(2) :26 -36.

共引文献1

同被引文献18

  • 1关振红,朱岱寅,朱兆达.SAR原始数据压缩技术研究[J].南京航空航天大学学报,2005,37(3):325-329. 被引量:4
  • 2CHEN S B,DONOHO D L,SAUNDERS M A. Atomic decomposition by basis pursuit[J].Society for Industrial and Ap-plied Mathematics,2001,(01):129-159.doi:10.1137/S003614450037906X.
  • 3唐禹.高分辨率SAR成像算法及实时处理技术的研究[D]北京:中国科学院研究生院,2006.
  • 4Kwok R,Johnson W T K. Block adaptive quantization of magellan SAR data[J].IEEE Transactions on Geoscience and Remote Sensing,1989,(04):375-383.doi:10.1109/36.29557.
  • 5Benz U,Strodl K,Moreira A. A comparison of several algorithms for SAR raw data compression[J].IEEE Transactions on Geoscience and Remote Sensing,1995,(05):1266-1276.doi:10.1109/36.469491.
  • 6Moreira A,Blaser F. Fusion of block adaptive and vector quantizer for efficient SAR data compression[A].Tokyo:IEEE Press,1993.1583-1583.
  • 7Donoho D L. Compressed sensing[J].IEEE Transactions on Information theory,2006,(04):1289-1306.doi:10.1109/TIT.2006.871582.
  • 8Herman M,Strohmer T. Compressed sensing radar[A].Rome:IEEE Press,2008.1509-1512.
  • 9Cetin M,Moses R L. SAR imaging from partial-aperture data with frequency-band omissions[A].IEEE Press,2005.32-43.
  • 10Bhattacharya S,Blumensath T,Mulgrew B. Fast encoding of synthetic aperture radar raw data using compressed sensing[A].Madison,WI:IEEE Press,2007.448-452.

引证文献1

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部