期刊文献+

基于聚类和分类的个性化文章自动推荐系统的研究 被引量:13

Research of a Novel Automatic Personalized Document Recommendation System Based on Clustering and Classification
下载PDF
导出
摘要 由于缺乏足够的反映用户兴趣的知识,以及巨大的在线计算量,导致互联网上现有文章自动推荐系统普遍存在盲目性和低效性的问题.针对以上问题,提出了一种基于聚类和分类的个性化文章自动推荐系统,利用机器学习的方法隐式地获取用户模型,并根据用户模型为用户提供个性化的文章自动推荐服务.该系统包括离线用户模型及用户群获取子系统和在线个性化文章推荐子系统两大部分,前者对文章进行聚类形成聚类兴趣点,构建基于聚类兴趣点的用户模型,并根据用户兴趣聚类形成各兴趣点的用户群;后者对待推荐文章进行分类,搜索到其所属的兴趣点,向该兴趣点的用户群进行主动推荐.理论分析和实验结果表明,该系统能够显著提高有效性和在线响应速度.所述的设计思想和技术也适用于其它互联网个性化信息自动推荐系统. Because of the lack of the adequate knowledge of users' interests and huge on-line computational demand, most existing document recommendation systems are not very effective and efficient. In this paper, a novel automatic personalized document recommendation system based on clustering and classification is proposed. The proposed system learns user profiles by employing machine learning methods and provides the personalized document recommendation services for each registered user based on the user profile. In order to improve the recommendation' s quality and reduce the on-line computation, the proposed system comprises off-line user profile and user group generation subsystem and on-line personalized document recommendation subsystem. The off-line user profile and user group generation subsystem clusters the documents into clusters called interest clusters, generates user profiles based on the interest clusters and clusters users into user groups based on the user profiles. The on-line personalized document recommendation subsystem classifies the new document and recommends the new document to the users who are interested in the interest cluster that the new document belongs to. The theoretical analysis and experimental results show that the system can improve the effectiveness and the real-time performance. The proposed idea and technique can also be used for other personalized information recommendation systems on the Internet.
出处 《南京大学学报(自然科学版)》 CAS CSCD 北大核心 2006年第5期512-518,共7页 Journal of Nanjing University(Natural Science)
基金 国家自然科学基金(70171052) 安徽省高校青年教师基金(2006jq1040)
关键词 聚类 分类 个性化 推荐系统 用户模型 clustering, classification, personalization, recommendation system, user profile
  • 相关文献

参考文献10

  • 1曾春,邢春晓,周立柱.个性化服务技术综述[J].软件学报,2002,13(10):1952-1961. 被引量:394
  • 2Bollacker K D, Lawrence S, Giles C L. Discovery relevance scientific literature on the web.IEEE Intelligence Systems, 2000,15(2) :42-77.
  • 3Mobasher B, Cooley R, Srivastava J. Automatic personalization based on web usage mining.Communications of the ACM,2000,43(8) : 142-151.
  • 4李振东,费翔林.基于概念的信息检索模型研究[J].南京大学学报(自然科学版),2002,38(1):99-109. 被引量:33
  • 5宋丽哲,牛振东,宋瀚涛,余正涛,师雪霖.数字图书馆个性化服务用户模型研究[J].北京理工大学学报,2005,25(1):58-62. 被引量:45
  • 6Albert R, Barabosi A L. Statistical mechanics of complex networks. Review of Modern Physics,2002,74(1):47-97.
  • 7Mooney R J, Roy L. Content-based book recommending using learning for text categorization.Proceedings of the 5th ACM Conference on Digital Libraries, 2000:195-204.
  • 8Rickard C, Martin S. Inverted file search algorithms for collaborative filtering. Proceedings ofthe 25th Annual International ACM SIGIR Conference, 2002: 246-252.
  • 9邓爱林,左子叶,朱扬勇.基于项目聚类的协同过滤推荐算法[J].小型微型计算机系统,2004,25(9):1665-1670. 被引量:147
  • 10Lee D L, Chuang H, Seamons K E. Document ranking and the vector-space model. IEEE Software, 1997,14(2) : 67-75.

二级参考文献79

  • 1Stefani A, Strappavara C. Personalizing access to Web sites: The SiteIF project [EB/OL]. http: //wwwis. win. rue. nl/ah98/Stefani/Stefani. html, 1998-06-24/2004-03-12.
  • 2Sorensen H, Mc Elligott M. PSUN: A profiling system for usenet news EA]. CIKM'95 Intelligent Information Agents Workshop [C]. Baltimore : ACM Press, 1995. 205 -211.
  • 3Sowa J F. Knowledge representation: Logical,philosophical, and computational foundations [M ].Brooks/Cole: Division of Thomson Learning Inc,2000.51-54.
  • 4Pratt K B, Tschapek G. Visualizing concept drift [A]. Proceedings of ACM Conference on Knowledge Discovery and Data Ming[C]. Washington, DC:ACMPress, 2003. 735-740.
  • 5Maloof M. Incremental rule learning with partial instance memory for changing concepts [ A ].Proceedings of the International Joint Conference on Neural Networks (IJCNN '03)[C]. Los Alamitos,CA: IEEE Press,2003.2764 2769.
  • 6Koychev I, Schwab I. Adaptation to drifting user's intersects [ A ]. Proceedings ECML2000/MLnet workshop"ML in the New Information Age" [C].Barcelona, Spain: IEEE Press,2000. 39-45.
  • 7Schafer J B, Konstan J A and Riedl J. Recommender systems in E-Commerce[C]. In: ACM Conference on Electronic Commerce(EC99), 1999, 158-166.
  • 8Breese J, Hecherman D and Kadie C. Empirical analysis of predictive algorithms for collaborative filtering[C]. In:Proceedings of the 14th Conference on Uncertainty in Artificial Intelligence(UAI-98), 1998, 43-52.
  • 9Schafer J B, Konstan J A and Riedl J. E-Commerce recommendation applications [J]. Data Mining and Knowledge Discovery,2001, 5 (1-2): 115-153.
  • 10Goldberg D, Nichols D, Oki B M and Terry D. Using collaborative filtering to weave an information tapestry[J]. Communications of the ACM, 1992,35(12):61-70.

共引文献604

同被引文献125

引证文献13

二级引证文献488

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部