摘要
对求解非线性方程的F展开法进行了综述,揭示了方法的内在本质,指出了F展开法可能的发展方向,并结合F展开法的最新进展,给出了一个辅助常微分方程,借助它可求解具有高次非线性项的非线性偏微分方程。作为实例,用其得到了两个具有高次非线性项的广义KdV方程的孤立波解,与已有文献相比较,这种方法更简练,结果更具有一般性。对于类似的方程同样可以用此方法求其解。
The F-expansion method which can be used to solve nonlinear equations has been summarized.The internal essence of the method has been brought to light,and the several possible improved aspects of the method have been pointed out.Based on the new progress of the method,a subsidiary ordinary differential equation that can be used to solve nonlinear partial differential equation with higher order nonlinear terms is given,by which,as illustrative examples,the solitary wave solutions for two generalized KdV equations with higher order nonlinear terms are obtained.Compared with the literature appeared,the F-expansion is simpler and the results obtained are more general.The method can also be used to solve similar nonlinear equations.
出处
《河南科技大学学报(自然科学版)》
CAS
2006年第5期90-92,共3页
Journal of Henan University of Science And Technology:Natural Science
基金
河南省教育厅自然科学基金项目(2006110002)
河南科技大学科研基金项目(2004ZD0022006ZY001)
关键词
F展开法
齐次平衡原则
广义KDV方程
孤立波解
F-expansion method
Homogeneous balance principle
Generalized KdV equation
Solitary wave solution