期刊文献+

应用MAP方差估计的话者自适应训练方法

Speaker Adaptive Training of Appling MAP Estimation for Covariance
下载PDF
导出
摘要 近年来话者自适应训练(SAT)方法日益受到重视。然而在实际中此方法通常因为部分方差的估计失误而导致识别性能下降。该文提出了一种应用最大后验概率(MAP)估计方差的全新SAT方法,它能够根据后验概率动态地调整模型的方差,从而解决上述问题。在Switchboard数据库上的实验显示,新方法能够显著地提高识别性能,并且有效地提升系统的稳定性。 Recently there has been a growing interest in speaker adaptive training(SAT). However, errors can often arise when estimating covariance matrices in the original SAT framework due to the lack of observations in some Gauss components. This paper presents a novel approach which applies maximum a posteriori (MAP) covariance-estimating into original SAT. Experimental results in Switchboard corpus demonstrate that the proposed method can deliver significant reductions in word error rate (WER) and raise the robustness of SAT process.
出处 《计算机工程》 EI CAS CSCD 北大核心 2006年第20期203-204,212,共3页 Computer Engineering
关键词 语音识别 话者自适应 话者自适应训练 MAP Speech recognition Speaker adaptation Speaker adaptive training(SAT) Maximum a postefiofi(MAP)
  • 相关文献

参考文献5

  • 1李虎生,刘加,刘润生.语音识别说话人自适应研究现状及发展趋势[J].电子学报,2003,31(1):103-108. 被引量:32
  • 2Anastasakos T,McDonough J W,Makhoul J.Speaker Adaptive Training:A Maximum Likelihood Approach to Speaker Normalization[C].Proc.of ICASSP,1997:1043-1046.
  • 3Leggetter C J,Woodland P C.Maximum Likelihood Linear Regression for Speaker Adaptation of Continuous Density Hidden Markov Models[J].Computer Speech and Language,1995,9(2):171-185.
  • 4Gauvain J L,Lee C H.Maximum A Posteriori Estimation for Multivariate Gaussian Mixture Observations of Markov Chains[J].IEEE Trans.on Speech and Audio Processing,1994,2(2):291-298.
  • 5Anastasakos T,Mcdonough J W,Schwartz R,et al.A Compact Model for Speaker Adaptive Training[C].Proc.of ICSLP,1996:764-767.

二级参考文献2

共引文献31

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部