期刊文献+

基于核的多元区别分析算法的特征抽取及其在人脸识别中的应用 被引量:2

Optimal feature extraction and face recognition based on kernel machine-based one-parameter multiple discriminant analysis
下载PDF
导出
摘要 提出了一种基于核技术的求多元区别分析最佳解的K1PMDA算法,并把这一算法应用于人脸识别中。对线性人脸识别中存在两个突出问题:1、在光照、表情、姿态变化较大时,人脸图像分类是复杂的、非线性的;2、小样本问题,即当训练样本数量小于样本特征空间维数时,导致类内散布矩阵奇异。对于前一个问题,可以采用核技术提取人脸图像样本的非线性特征,对于后一个问题,采用加入一个扰动参数的扰动算法。通过对ORL,YaleGroupB以及UMIST三个人脸库的实验表明,该算法是可行的、高效的。 A new algorithm, namely kernel machine-based one-parameter multiple discriminant analysis (K1PMDA), to extract optimal discriminant features was proposed and applied to face recognition. There are two problems in linear face recognition: One is that the distribution of face images with different pose, illumination and face expression is complex and nonlinear. The other is the small sample size (S3) problem. Tnis problem occurs when the number of training samples is smaller than the dimeusionality of feature vectors, which results in a singular within-class scatter matrix. For the former, kernel technique can be used to extract nonlinear feature, and for the latter, a disturbed parameter was introduced to overcome S3 problem. Three databases, namely ORL, Yale Group B, and UMIST were selected for evaluation. The results are encouraging.
作者 吕冰 王士同
出处 《计算机应用》 CSCD 北大核心 2006年第11期2781-2783,2786,共4页 journal of Computer Applications
关键词 核技术 多元区别分析 小样本问题 人脸识别 kernel Multiple Discriminant Analysis(MDA) Small Sample Size(S3) face recognition
  • 相关文献

参考文献15

  • 1TURK M, PENTLAND A. Eigenfaces for recognition[ J]. Cognitive Neuroscience, 1991,3( 1 ) : 71 - 86.
  • 2BELHUMEUR V, HESPANHA J, KRIEGMAN D. Eigenfaces vs.Fisherfaces: Recognition using class specific linear projection[ J].IEEE Transactions on Pattern Analysis and Machine Intelligence,1997, 19(7):711 - 720.
  • 3FOLEY DH, SAMMON Jr JW. An optimal set of discriminant vectors[ J]. IEEE Transactions on Computer, 1975, 24(3) : 281 -289.
  • 4DUDA RO, HART PE. Pattern Classification and Soene Analysis[ M]. New York: John Wiley & Sons, Inc, 1973.
  • 5VAPNIK VN. The Nature of statistical Learning Theory[ M]. New York: Springer-Verlag, 1995.
  • 6VOLKER R , VOLKER S . Nonlinear discriminant analysis using kernel functions[ A]. SOLLA SA, LEEN TK, KLAUS-ROBERT R,ed. Advance in Neural Information Processing Systems 12[ C]. Cambridge, MA: MIT Press, 2000. 568 -574.
  • 7KLAUS-ROBERT M, SEBASTIAN M, GUNNAR R, et al. An introduction to kernel-based learning algorithms[ J]. IEEE Transactions on Neural Networks, 2001, 12(2) : 181 - 201.
  • 8CHEN L, LIAO H, KO M, et al. A new LDA-based face recognition system which can solve the small sample size problem[ J]. Pattern Recognition, 2000,33(10) : 1713 - 1726.
  • 9YU H, YANG J. A direct LDA algorithm for high-dimensional data-with application to face recognition[ J]. Pattern Recognition, 2001,34(10) : 2067 - 2070.
  • 10HONG ZQ , YANG JY . Optimal discrlminant plane for a small number of samples and design method of classifier on the plane[ J]. Pattern Recognition, 1991,24(4) : 217 - 324.

二级参考文献13

  • 1Wilks S S. Mathematical Statistics [M]. New York: Wiley,1962
  • 2Duda R, Hart P. Pattern Classification and Scene Analysis [M]. New York: Wiley, 1973
  • 3Belhumeur Peter N, Hespanha Joao P, Kriegam David J. Eigenfaces vs. Fisherfaces: Recognition using class specific linear projection [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1997, 19(7): 711~720
  • 4Foley Donald H, Sammon John W, Jr. An optimal set of discriminant vectors [J]. IEEE Transactions on Computers,1975, 24(3): 281~289
  • 5Guo Yuefei, Shu Tingting, Yang Jingyu, et al. Feature extraction method based on the generalized fisher discriminant criterion and facial recognition [J]. Pattern Analysis and Application, 2001, 4(1): 61~66
  • 6Vapnik Vladimir N. The Nature of statistical Learning Theory [M]. New York: Springer-Verlag, 1995
  • 7Baudat G, Anouar F. Generalized discriminant analysis using a kernel approach [J]. Neural Computation, 2000, 12 (10):2385 ~ 2404
  • 8Roth Volker, Steinhage Volker. Nonlinear discriminant analysis using kernel functions [A]. In: Solla S A, Leen T K, Muiller K-R, eds. Advance in Neural Information Processing Systems12 [C]. Cambridge, MA: MIT Press, 2000. 568~574
  • 9Mika Sebastian, Ratsch Gunnar, Weston Jason, et al. Fisher discriminant analysis with kernels [A]. In: Hu Y-H, Larsen J,Wilson E, eds. Neural Networks for Signal Processing IX [C]. Piscataway, NJ: IEEE Press, 1999. 41~48
  • 10Miller Klaus-Robert, Mika Sebastian, Ratsch Gunnar, et al. An introduction to kernel-based learning algorithms [J]. IEEE Transactions on Neural Networks, 2001, 12(2): 181~201

共引文献9

同被引文献31

  • 1孙权森,曾生根,王平安,夏德深.典型相关分析的理论及其在特征融合中的应用[J].计算机学报,2005,28(9):1524-1533. 被引量:89
  • 2贺云辉,赵力,邹采荣.一种基于KCCA的小样本脸像鉴别方法[J].应用科学学报,2006,24(2):140-144. 被引量:8
  • 3TAX D M J, DUIN R P W. Support vector data description[ J]. Machine Learning, 2004, 54(1): 45-66.
  • 4ZHENG W M, ZHOU X Y, ZOU C. Facial expression recognition using kernel canonical correlation analysis (KCCA)[ J]. IEEE Transactions on Neural Networks, 2006, 17(1): 233 -238.
  • 5MELZER T, REITER M, BISCHOF H. Appearance models based on kernel canonical correlation analysis[ J]. Pattern Recognition, 2003, 36(9) : 1961 - 1971.
  • 6ZOU CAI-RONG, SUN NING, JI ZHEN-HAI, et al. 2DCCA: A novel method for small sample size face recognition[ C]// Proceedings of the 8th IEEE Workshop on Application of Computer Vision. Washington, D C: IEEE Computer Society, 2007:43-47.
  • 7BAUDAT G, ANOUAR F. Feature vector selection and projection using kernels[J]. Neurocomputing, 2003, 55(1/2): 21-38.
  • 8LIU QING-SHAN, LU HAN-QING, MA SONG-DE. Improving kernel fisher discriminant analysis for face recognition[ J]. IEEE Transactions on Circuits and Systems for Video Technology, 2004, 14 (1): 42-49.
  • 9FOODY G M, MATHUR A, HERNANDEZ C S, et al. Training set size requirements for the classification of a specific class[ J]. International Journal of Remote Sensing of Environment, 2006, 104(1) : 1 -14.
  • 10ZHANG Y , CHI Z X . A fuzzy support vector classifier based on Bayesian optimization [ J]. Fuzzy Optimization Decision Making, 2008, 7(1): 75-86.

引证文献2

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部