期刊文献+

近壁面水动力干扰下的AUV运动控制研究 被引量:5

Research on motion control of AUV with hydrodynamic interactions near plane wall
下载PDF
导出
摘要 按自治式水下机器人(AUV)需要接近水下工作站并实现坐落的要求,依据平壁面对AUV水动力干扰的力学机理,建立了AUV在平壁面附近运动时的数学模型,并设计了五个自由度运动PID控制器.在海流影响下,通过系统仿真,实现了AUV的五自由度运动控制和准确坐落,仿真结果验证了控制策略的可行性. According to the requirement that autonomous underwater vehicle (AUV) should approach and locate on the underwater workstation, the mathematical model of A UV moving near the plane wall is presented on the basis of the principle of hydrodynamic forces disturbed by plane wall, and PID controllers with five degrees of freedom are designed. Under the influence of ocean current, the motion control of A UV in five degrees of freedom as well as the accurate location on the workstation is accomplished by system simulations. The simulation results demonstrate the feasibility of the control strategy.
出处 《船舶工程》 CSCD 北大核心 2006年第5期63-66,共4页 Ship Engineering
关键词 机器人 自治式水下机器人 建模 水动力干扰 PID控制 robot autonomous underwater vehicle(AUV) modeling hydrodynamic interactions PID control
  • 相关文献

参考文献7

  • 1程丽,张亮,吴德铭,陈强.无升力双体水动力干扰计算[J].哈尔滨工程大学学报,2005,26(1):1-6. 被引量:11
  • 2Korsmeyer F T,Lee C H,Newman J N.Computation of ship interaction forces in restricted waters[J].Journal of Ship Research,1993,37(4):298-306.
  • 3朱军,陈强,高俊吉,黄昆仑.扁平潜器微速与倒航水动力试验研究[J].水动力学研究与进展(A辑),2004,19(3):401-406. 被引量:5
  • 4汪伟.AUV在复杂海洋环境条件下鲁棒性动态控制技术[D].哈尔滨:哈尔滨工程大学动力与核能工程学院,2003.
  • 5吕舒平.救生艇六自由度动力定位系统建模与控制研究[D].哈尔滨:哈尔滨工程大学动力工程系,2000.
  • 6Lea,R K Allen,et al.Comparative study of control techniques for an underwater flight vehicle[J].International Journal of Systems Science,1999,30(9):947-964.
  • 7Silvia M Zanoli,Giuseppe Conte.Remotely operated vehicle depth control[J].Control Engineering Practice,2003,11:453-459.

二级参考文献22

  • 1HICKS W M. On the motion of two cylinders in a fluid[J]. Quarterly Journal of Mathematics, 1987, 16: 113-140, 193-219.
  • 2SUN R, CHWANG A T. Hydrodynamic interaction between a slightly distorted sphere and a fixed sphere[J]. Theoretical and Computational Fluid Dynamics, 2001, 15(1): 11-22.
  • 3HESS J L, SMITH A M O. Calculation of non-lifting potential flow about arbitrary 3D bodies[J]. Journal of Ship Research, 1964, 8(2): 22-44.
  • 4GUO Z, CHWANG A T. On the planar translation of two bodies in a uniform flow[J]. Journal of Ship Research, 1992, 36(1): 38-54.
  • 5LANDWEBER L, SHAHSHAHAN A. Added masses and forces on two bodies approaching central impact in an inviscid fluid[J]. Journal of Ship Research, 1992, 36(2): 99-122.
  • 6LANDWEBER L, SHAHAHAHAN A. Addedum to "Added masses and forces on two bodies approaching central impact in an inviscid fluid"[J]. Journal of Ship Research, 1994, 38(2): 172-173.
  • 7COHEN S B, BECK R F. Experimental and theoretical hydrodynamic forces on a mathematical model in confined waters[J]. Journal of Ship Research, 1983, 27: 75-89.
  • 8KORSMEYER F T, LEE C H, NEWMAN J N. Computation of ship interaction forces in restricted waters[J]. Journal of Ship Research, 1993, 37(4): 298-306.
  • 9ISAACSON M, CHEUNG K F. Hydrodynamics of ice mass near large offshore structure[J]. Journal of Waterway, Port, Coastal, and Ocean Engineering, 1988, 114(4): 487-502.
  • 10GUO Z, CHWANG A T. Boundary-integral computation of hydrodynamic interactions between a 3D body and an infinitely long cylinder[J]. Journal of Ship Research, 1993, 37(4): 281-297.

共引文献14

同被引文献33

引证文献5

二级引证文献31

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部