期刊文献+

格值一阶逻辑系统LF(X)中的广义量词 被引量:4

Generalized Quantifier in the L-valued First-order Logic LF(X)
下载PDF
导出
摘要 给出格值一阶逻辑系统LF(X)中广义量词的定义,讨论了带广义量词的不确定性推理的性质,为语言值逻辑推理提供科学的逻辑平台。 In the present paper, we gave the definition of the generalized quantifier in the L-valued first-order logic LF(X). We also discuss the properties of uncertainty reasoning with the generalized quantifier, which will become the theoretical foundation of linguistic logic reasoning.
出处 《模糊系统与数学》 CSCD 北大核心 2006年第5期96-100,共5页 Fuzzy Systems and Mathematics
基金 国家自然科学基金资助项目(60474022) 四川师范大学2005年度重点科研基金资助项目
关键词 格值-阶逻辑系统LF(X) 广义量词 不确定性推理 L-valued First-order Logic LF(X) Generalized Quantifier Uncertainty Reasoning
  • 相关文献

参考文献11

  • 1Zadeh L A.The concept of a linguistic variable and its application to approximate reasoning[J].Information Sciences,1975,8:199~249;8:301~357;9:43~80.
  • 2Zadeh L A.Outline of a new approach to the analysis of complex systems and decision processes[J].IEEE Trans,System,Man and Cybemetics,1973,1:28~44.
  • 3Lukasiewicz J.On 3-valued logic[J].Ruch Filozoficzny,1920,5:169~170.
  • 4Pavelka J.On fuzzy logic I:Many-valued rules of inference; II:Enriched residuated lattice and semantics of propositional calculi; III:Semantical comleteness of some many-valued propositional calculi[A].Zeitschr.F.Math.Logik and Grundlogend Math.(Vol.25)[C].1979:45~52;119~134;447~464.
  • 5Novak V.First-order fuzzy logic[J].Studia Logica,1982,46(1):87~109.
  • 6徐扬.格蕴涵代数[J].西南交通大学学报,1993,28(1):20-27. 被引量:318
  • 7秦克云,徐扬.格值命题逻辑系统L(X)(I)[J].模糊系统与数学,1997,11(4):5-11. 被引量:9
  • 8秦克云,徐扬,宋振明.格值命题逻辑系统L(X)(Ⅱ)[J].模糊系统与数学,1998,12(1):10-19. 被引量:13
  • 9Xu Y,Qin K Y,Liu J,Song Z M.L-valued propositional logic Lvpl[J].Information Science,1999,114:205~235.
  • 10Klir G J,Yuan B.Fuzzy Sets and Fuzzy Logic[M].1995.

共引文献320

同被引文献14

  • 1周平,姜明,徐扬.基于格值命题逻辑系统LP(X)的不确定性推理[J].四川师范大学学报(自然科学版),2006,29(5):509-511. 被引量:3
  • 2周平,姜明,徐扬.格值一阶逻辑系统LF(X)中带广义量词的不确定性推理[J].模糊系统与数学,2007,21(2):40-45. 被引量:3
  • 3Zadeh L A.The concept of a linguistic variable and its application to approximate reasoning[J].Information Sciences,1975,8:199~249;8:301~357;9:43~80.
  • 4Zadeh L A.Outline of a new approach to the analysis of complex systems and decision processes[J].IEEE Trans.,System,Man and Cybemetics,1973,1:28~44.
  • 5Lukasiewicz J.On 3-valued logic[J].Ruch Filozoficzny,1920,5:169~170.
  • 6Pavelka J.On fuzzy logic Ⅰ:Many-valued rules of inference,Ⅱ:Enriched residuated lattice and semantics of propositional calculi,Ⅲ:Semantical comleteness of some many-valued propositional calculi[J].Zeitschr.F.Math.Logik and Grundlogend Math.,1979,25:45~52;119~134;447~464.
  • 7Novak V.First-order fuzzy logic[J].Studia Logica,1982,46(1):87~109.
  • 8Xu Y,Qin K Y,Liu J,Song Z M.L-valued propositional logic Lvpl[J].Information Science,1990,114:205~235.
  • 9Xu Y,Ruan D,Qin K Y,Liu J.Lattice-valued logic[M].Springer,2003.
  • 10Klir G J,Yuan B.Fuzzy sets and fuzzy logic[Z].1995.

引证文献4

二级引证文献9

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部