摘要
目的精确表示一类超越曲线,如双曲线弧、悬链线、指数曲线等。方法在代数双曲混合函数空间Γn=span{1,t,t2,…,tn-2,sinht,cosht}(n≥2)中构造一组规范基,基于该规范基函数定义曲线。结果给出了空间Γn的一组规范基函数{ui,n(t)}ni=0,得到了H-Bézier曲线,并分析得出了该基函数及所生成曲线的性质。结论所得曲线可精确表示一类超越曲线,它既继承了多项式曲线的优点,又具有双曲函数的优点。
Aim To accurately represent some transcendental curves. Methods A new basis, to be called H- B6zier basis, is constructed for the space Гn = span{ 1 ,t,t^2 … ,t^n-2 ,sinh t,cosh t} (n ≥ 2) by an integral approach. Results Based on this basis, H-Bezier curves is defined. After that, the properties of such basis and curves are presented. Conclusion Some transcendental curves are represented.
出处
《西北大学学报(自然科学版)》
CAS
CSCD
北大核心
2006年第5期693-697,共5页
Journal of Northwest University(Natural Science Edition)
基金
国家自然科学基金资助项目(60372072)