期刊文献+

广义非线性超弹性杆波动方程的行波解 被引量:3

Traveling Wave Solution for Generalized Hyperlastic-Rod Wave Equation
下载PDF
导出
摘要 研究了广义非线性超弹性杆波动方程ut-utxx+12g′(u)ux=γ(2uxuxx+uuxxx)行波解的存在性,这里t∈(0,+∞),x∈(-∞,+∞),g(u)是关于u的多项式.通过讨论方程的极限零点和非极限零点,获得了保证其行波解存在惟一性的充分条件. The paper studys the generalized hyperlastic-rod wave equation u1-utxx+1/2g′(u)ux=γ(2uxuxx+uuxxx)where g(u) is a polynomial to u t∈(0,+∞),x∈(-∞,+∞),g(u). By deriving limiting zero point of the equation, some sufficient conditions that guarantee the existence and uniqueness of traveling wave solution of this equation are obtained.
出处 《江南大学学报(自然科学版)》 CAS 2006年第5期620-623,共4页 Joural of Jiangnan University (Natural Science Edition) 
基金 江苏省高校自然科学计划项目(05KJB110018)
关键词 超弹性杆波动方程 行波解 极限零点 hyperlastic-rod wave equation traveling wave solution limiting zero point
  • 相关文献

参考文献10

  • 1Dai H-H.Model equation for nonilinear dispersive wave in a compressible Mooney-Rivlin rod[J].Acta Mech,1998,127:193-207.
  • 2DAI H-H.Solitary shock waves and other traveling waves in a general compressible hyperlastic rod[J].Proc R Lond A,2000,456:331-363.
  • 3Coclte G M,Holden H,Karlsen K H.Global weak solutions to a generalized hyperlastic-rod wave equation[J].Dept of math,2004,35:1-23.
  • 4殷久利,田立新,桂贵龙.广义Camassa-Holm方程的对称性约化和精确解[J].江苏大学学报(自然科学版),2005,26(4):312-315. 被引量:6
  • 5谢绍龙.广义Camassa-Holm方程的孤立尖波[J].云南大学学报(自然科学版),2001,23(1):5-9. 被引量:9
  • 6黄南京.一类广义BBM方程周期行波解的存在性[J].应用数学和力学,1997,18(6):557-561. 被引量:2
  • 7张卫国 王明亮.B-BBM方程的一类准确行波解及结构[J].数学物理学报,1992,3:325-331.
  • 8YIN Z-Y.On the Chachy problem for a nonlinearly dispersive wave equation[J].Nonlinear Mathematical Physics,2003(1):10-15.
  • 9Lopes.Stability of peakons and periodic cusp waves in a generalized Camassa-Holm equation[J].Chaos Solitons Fractals,2001,7:1347-1360.
  • 10陈陆君 梁昌洪.孤立子理论及其应用[M].西安:西安电子科技大学出版社,1997.199.

二级参考文献8

  • 1黄南京,赣南师范学院学报,1992年,3卷,14页
  • 2张卫国,数学物理学报,1992年,12卷,325页
  • 3郭大钧,非线性泛函分析,1985年
  • 4Liu Zhengrong,Int J Bifurcation Chaos,2001年,11卷,5期
  • 5Wang L Y. Similarity of the K(m,n) equation[J].Acta Phys Sin, 2000,49: 18. (in English)
  • 6Camaasa R, Holm D. An integrable shallow equation with peaked solitons[J]. Phy Rev Lett, 1999, 19:371- 376.
  • 7TIAN Lixin, YIN Jiuli. New Compacton solutions and solitary wave solutions of fully nonlinear generalized Camassa-Holm equations [ J ]. Chaos, Solitons and Fractals,2004, 20(3) :289 -299.
  • 8田立新,殷久利.非线性Schrdinger方程的Compacton解和孤立波解[J].江苏大学学报(自然科学版),2004,25(1):44-47. 被引量:15

共引文献24

同被引文献16

  • 1宁伟,卿熙宏,陶华学.求解广义动态非线性测量数据处理的信赖域法[J].辽宁工程技术大学学报(自然科学版),2005,24(1):29-31. 被引量:5
  • 2张燕,谢梦尧.非线性弹性梁的静力屈曲分叉及应用[J].辽宁工程技术大学学报(自然科学版),2005,24(4):533-536. 被引量:4
  • 3张卫国,东春彦.广义组合KdV方程与广义组合KdV-Burgers方程孤波解的条件稳定性[J].上海理工大学学报,2006,28(4):307-316. 被引量:3
  • 4Zhang Daheng,Ding Danping,Hong Baojian.Traveling wave solution for generalized hyperelastic-rod wave equation[J].Journal of Southern Yangtze University:Natural Science Edition,2006,5 (5):620-623.
  • 5Li Jibin,Zhang Yi.Exact travelling wave solutions in a nonlinear elastic rod equation[J].Applied Mathematics and Computation,2008,202 (2):504-510.
  • 6Cai Guoliang,Ye Peng,Wang Lixia,et al.Exactly fractional solutions to the generalized nonlinear dispersive hyperelastic-rod wave equation[J].Information Electronic and Computer Science,2010,3:1521-1523.
  • 7Cai Guoliang,Ren Lei,Zhang Fengyun,et al.An extended generalized F-expansion method for solving coupled MKDV equations[J].International Journal of Nonlinear Science,2008,5(1):51-57.
  • 8Chen Aiyong,Li Jibin,Huang Wentao.Travelling wave solutions of the Fornberg-Whitham equation[J].Applied Mathematics and Computation,2009,215 (8):3068-3075.
  • 9Cai Guoliang,Zhang Zhenzhen,Wu Xianbin.Singularities analysis and traveling wave solutions for generalized hyperelastic-rod wave equation[C]//Proceedings of International Conference on Information and Computing Science.Piscataway,USA:IEEE,2012,217-220.
  • 10Ye Peng,Cai Guoliang.Exact solutions to the generalized nonlinear dissipative hyperelastic-rod wave equation[J].Journal of Jiangnan University:Natural Science Edition,2010,9(6):727-731.

引证文献3

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部