摘要
研究了广义非线性超弹性杆波动方程ut-utxx+12g′(u)ux=γ(2uxuxx+uuxxx)行波解的存在性,这里t∈(0,+∞),x∈(-∞,+∞),g(u)是关于u的多项式.通过讨论方程的极限零点和非极限零点,获得了保证其行波解存在惟一性的充分条件.
The paper studys the generalized hyperlastic-rod wave equation u1-utxx+1/2g′(u)ux=γ(2uxuxx+uuxxx)where g(u) is a polynomial to u t∈(0,+∞),x∈(-∞,+∞),g(u). By deriving limiting zero point of the equation, some sufficient conditions that guarantee the existence and uniqueness of traveling wave solution of this equation are obtained.
出处
《江南大学学报(自然科学版)》
CAS
2006年第5期620-623,共4页
Joural of Jiangnan University (Natural Science Edition)
基金
江苏省高校自然科学计划项目(05KJB110018)
关键词
超弹性杆波动方程
行波解
极限零点
hyperlastic-rod wave equation traveling wave solution limiting zero point