期刊文献+

基于频谱法和带偏差单元递归神经网络的水电机组振动故障诊断 被引量:5

Vibration Fault Diagnosis of Hydroelectric Generation Sets Based on Spectrum Analysis and IRN Network
下载PDF
导出
摘要 引起水电机组振动的原因很复杂,而且水电机组的振动故障往往是多故障同时发生,使得故障诊断很困难,目前主要是应用基于模式识别的神经网络来进行故障分类,尤其是BP网络应用较多,但BP网络训练速度慢。文章提出应用带偏差单元递归神经网络的方法对水电机组的振动故障进行诊断。先对水电机组振动信号进行频谱分析,提取该信号在频率域的特征量,将频谱特征向量作为学习样本,通过训练,使神经网络能够反映频谱特征向量和故障类型的映射关系,从而达到故障诊断的目的。水电机组振动故障诊断仿真分析表明,与常规方法相比,应用带偏差单元递归神经网络进行故障诊断具有快速有效的优点。 The causes for the vibration of hydro-electric generation sets are complicated. What's more, their multiple vibration faults happen simutaneously. Therefore it is difficult to diagnose the faults. Currently faults are classified mainly through applying the networks based on pattern recognition, especially BP neural networks, the training of which, however, is slow. For these reasons, the paper applied the internally recurrent network(IRN) to diagnose the vibration faults of hydro-electric generation sets. First, spectral analysis of their vibration signals was carried out to extract their spectral feature vectors in the frequency domains of the generation sets. Then the feature vectors were used as learning samples to train the IRN network to realize the mapping relationship between spectral feature vectors and fault types, thus achieving the purpose of diagnosing faults. The simulation of the vibrant faults of hydro-electric generation sets shows that compared with other diagnostic methods, the method proposed in the paper is fast and effective.
出处 《机械科学与技术》 CSCD 北大核心 2006年第11期1281-1284,共4页 Mechanical Science and Technology for Aerospace Engineering
基金 国家自然科学基金项目(90410019)资助
关键词 水电机组 故障诊断 频谱分析 递归神经网络 神经网络 hydro-electric generation set fault diagnosis spectral analysis internally recurrent network (IRN) neural network
  • 相关文献

参考文献7

二级参考文献34

  • 1颜延虎,钟秉林,黄仁,万德均.神经网络技术及其在旋转机械故障诊断中的应用[J].振动工程学报,1993,6(3):205-212. 被引量:23
  • 2蔡正国.神经网络用于转子在线振动监测中的谱型预报[J].西安交通大学学报,1994,28(9):1-6. 被引量:5
  • 3陈循,田江红,温熙森,唐丙阳.阶比谱分析与汽车起动电机故障的实时诊断[J].国防科技大学学报,1996,18(4):44-48. 被引量:8
  • 4沈清.神经网络应用技术[M].长沙:国防科技大学出版社,1993..
  • 5胡守仁 余少波 戴蔡.神经网络导轮[M].长沙:国防科技大学出版社,1992..
  • 6[1]Chuel-Tin Chang,Kai-Nan Mah,Chii-Shiang Tsai.A simple design stratage for fault monitoring systems[J].AIChE Journal,1999,39(3):1146-1163.
  • 7[2]Kajiro Watanabe,Ichiro Matsuura,Masahiro Abe,et al.Incipient fault diagnosis of chemical processing via artificial neural networks [J].AIChE Journal,1989,35(11):1803-1812.
  • 8[3]Timo Sorsa,Heikki N,Koivo,Hannu Koivisto.Neural networks in process fault diagnosis[J].IEEE Transactions on System,Man and Cybernetics,1991,21(4):815-825.
  • 9[4]Fan J Y,Nikolaou M,White R E.An approach to fault diagnosis of chemical processes via neural networks[J].AIChE Journal,1993, 39(1):82-87.
  • 10[5]Tansel I N, Wagiman A, Tziranis A. Recognition of chatter with neural networks[J]. Int. J. Mach. Tools Manufactory, 1991, 31(4): 539-552.

共引文献144

同被引文献47

引证文献5

二级引证文献52

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部