期刊文献+

一类不确定分段线性系统的优化控制

Optimal control of one class of uncertain piecewise linear systems
下载PDF
导出
摘要 针对不确定分段线性系统,将最优控制设计问题转化成最优控制性能上界的优化问题及性能下界的求取问题。其中性能上界的优化是一组以反馈增益为寻优参数的双线性矩阵不等式(bilinearmatrix inequalities,BM I)问题,而性能下界是一组基于线性矩阵不等式(linearmatrix inequalities,LM I)的半正定规划问题。对BM I问题,结合混沌优化算法和内点法设计了一种混合算法。最后的算例表明对控制律的设计及其求解算法的有效性。 The optimal control design for the uncertain piecewise linear system has been converted to the problem of optimizing upper bound and seeking lower bound of the optimal control performance. Therein the optimizing the upper bound of the performance can be expressed as a problem of bilinear matrix inequalities (BMI) in which the feedback gain is taken as the optimization parameters, and the seeking the lower bound is a semidefinite programming problem based on the linear matrix inequalities (LMI). A mixed algorithm combining the chaos optimization and the interior-point method was designed to solve the BMI. The effectiveness of the control design and its solving algorithm was demonstrated successfully by a numerical example.
出处 《吉林大学学报(工学版)》 EI CAS CSCD 北大核心 2006年第6期929-933,共5页 Journal of Jilin University:Engineering and Technology Edition
基金 国家自然科学基金资助项目(70171004)
关键词 自动控制技术 不确定分段线性系统 最优控制 双线性矩阵不等式 半正定规划 混沌优化 automatic control technology uncertain piecewise linear system optimal control bilinear matrix inequalities semidefinite programming chaos optimization
  • 相关文献

参考文献8

  • 1Johansson M.Piecewise Linear Control Systems[M].Berlin:Springer-Verlag,2003:55-56.
  • 2Gang Feng.Controller design and analysis of uncertain piecewise-linear systems[J].IEEE Transactions on Circuits and Systems-Ⅰ:Fundamental Theory and Applications,2002,49 (2):224-232.
  • 3Goh K C,Turan L,Safonov M G,et al.Bi-affine matrix inequality properties and computational methods[C]//In Proceedings of the American Control Conference,Baltimore,MD,1994:850-855.
  • 4Fukuda M,Kojima M.Branch-and-cute algorithms for the bilinear matrix inequality eigenvalue problem[J].Computational Optimization and Applications,2001,19(1):79-105.
  • 5张建雄,唐万生.分段线性系统最优控制设计的一种混合算法[J].控制与决策,2005,20(4):451-454. 被引量:6
  • 6Boyd S,Ghaoui L El,Feron E,et al.Linear Matrix Inequalities in System and Control Theory[M].Philadelphia:SIAM,1994:7-24.
  • 7Petersen I R.A stabilization algorithm for a class of uncertain linear systems[J].System & Control Letters,1987,8(4):351-357.
  • 8张建雄,唐万生.基于混沌遗传算法的一类非线性两层混合整数规划问题求解[J].系统工程理论方法应用,2005,14(5):429-433. 被引量:14

二级参考文献15

  • 1Johansson M. Piecewise linear control systems[M]. Berlin: Springer-Verlag, 2003: 99-103.
  • 2Goh K C, Turan L, Safonov M G, et al. Bi-affine matrix inequality properties and computational methods [A]. Proc of the American Control Conf[C]. Baltimore, 1994: 850-855.
  • 3Hassibi A, How J, Boyd S. A path-following method for solving BMI problems in control[A]. Proc of the American Control Conf[C]. San Diego, 1999: 1385-1389.
  • 4Fukuda M, Kojima M. Branch-and-cute algorithms for the bilinear matrix inequality eigenvalue problem[J]. Computational Optimization and Applications, 2001,19(1):79-105.
  • 5Boyd S, El Ghaoui L, Feron E, et al. Linear matrix inequalities in system and control theory[M]. Philadelphia: SIAM, 1994:7-24.
  • 6Costa L, Oliveira P. Evolutionary algorithms approach to the solution of mixed integer non-linear programming problems[J]. Computers and Chemical Engineering, 2001,25(2): 257-266.
  • 7周明 孙树栋.遗传算法原理及应用[M].北京:国防工业出版社,2000..
  • 8张彤,张华,王子才.浮点数编码的遗传算法及其应用[J].哈尔滨工业大学学报,2000,32(4):59-61. 被引量:56
  • 9王宁,刘黎明,刘玲玲.混沌遗传算法(英文)[J].运筹学学报,2001,5(3):1-10. 被引量:8
  • 10李亚东,李少远.一种新的遗传混沌优化组合方法[J].控制理论与应用,2002,19(1):143-145. 被引量:36

共引文献18

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部