期刊文献+

基于粗糙神经网络的医学图像分类新方法 被引量:6

A New Medical Image Classify Approach Based on Rough Neural Network
下载PDF
导出
摘要 由于乳腺X光图像的复杂性,直接从图像中看出肿瘤及其良、恶性质是比较困难的,因此建立高效的肿瘤自动诊断系统是非常必要的。文章将粗糙集理论中基于信息增益的约简方法和神经网络相结合,提出了粗糙神经网络算法RNN,将其应用于乳腺X光图像分类。实验结果表明,该方法的分类精确度可达到92.37%比单独使用神经网络方法的分类精确度(81.25%)要高,同时所花费的时间也明显减少。 Detecting tumor in mammography is a difficult task Because of complexity in the image. This brings the necessity of creating automatic tools to find whether a mammography present tumor or not. In this paper we join neural network with information gain reduction of rough sets theory which we call the rough neural network(RNN)to classify digital mammography. The experimental results show that the rough neural network performs better than only neural network algorithm in terms of time though it can get 92.37% classify accuracy which is higher than 81.25% using neural network only.
出处 《计算机科学》 CSCD 北大核心 2006年第11期151-153,共3页 Computer Science
基金 国家自然科学基金资助项目(60373108) 国家自然科学基金资助项目(60573096) 甘肃省自然科学基金资助项目(3ZS051-A25-042)
关键词 粗糙神经网络 粗糙集理论 乳腺X光图像 Rough neural network,Rough sets theory, Mammography
  • 相关文献

参考文献12

  • 1Antonie M L, Zaiane O R, Coman A. Application of data mining techniques for medical image classification [C]. In: Proc. of Second Intl Workshop on Multimedia Data Mining (MDM/KDD'2001)in Conjunction with Seventh ACM SIGKDD, San Francisco, USA, 2001.94-101
  • 2Zhang Xiao-Ping, Desai M D. Wavelet Based Automatic Thresholding for Image Segmentation [C]. In: Proceedings of the ICIP'97 conference, Santa Barbara, CA, 1997. 26-29
  • 3Bottigli U, Golosio B. Feature Extraction from Mammographic Images Using Fast Matching Methods [J]. Nuclear Instruments and Methods in Physics Research, 2002, A 487: 209-215
  • 4Sharma M, Singh S. Evaluation of Texture Methods for Image Analysis [C]. In.. Proceedings of the 7^th Australian and New Zeland Intelligent Information Systems Conference. Perth, November, 2001. 18-21
  • 5Yoshida H, Doi K, Nishikawa R, et al. Application of the Wavelet Transform to Automated Detection of Clustered Microcalcifications in Digital Mammograms [R]. In: Academic Reports of Tokyo Institute of Polytechnics, 1994. 24-37
  • 6Brazokovic D, Neskovic M. Mammogram Screening Using Multiresolution-based Image Segmentation [J]. International Journal of Pattern Recognition and Artificial Intelligence, 1993,7 (6) : 1437-1460
  • 7Li H, et al. Markov Random Field for Tumor Detection in Digital Mammography [J]. IEEE Trans Medical Imaging, 2000, 14(3):565-576
  • 8http://www. wiau. man. ac. uk/services/MIAS/MIASweb.html[DB/OL]
  • 9Pawlak Z W, Rough sets and intelligent data analysis[J]. Information sciences, 2002. 1-12
  • 10HanJiawei MichelineKambe.数据挖掘概念与技术[M].北京:机械工业出版社,2001..

共引文献148

同被引文献86

引证文献6

二级引证文献21

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部