期刊文献+

差异表达基因筛选方法的比较 被引量:7

Comparison of Methods Used for Detecting Differentially Expressed Genes
下载PDF
导出
摘要 目的比较基因芯片数据分析中常用的用于筛选差异表达基因的几种方法,探讨各方法的筛选效果。方法使用Bonferroni修正法等8种保守的方法以及两样本t检验、Wilcoxon非参数法、SAM共11种方法对模拟的芯片数据进行处理,以FDR(False discovery rate)和筛检的差异表达基因个数为指标考察其筛选效果。结果SAM的FDR仅次于8种保守的方法,但筛检的差异表达基因个数较多,适合基因芯片初筛差异表达基因的目的。结论SAM适合基因芯片初筛差异表达基因的目的。 Objective To compare the performance of methods used in the microarray data analysis for selecting differentially expressed genes. Methods 8 conservative methods including Bonferroni adjustment and 7 others, two sample t test, Wilcoxon approach and SAM approach, all together 11 methods are used to analyze the simulated data. FDR (False discovery rate) and the number of detected differentially expressed genes are employed to evaluate these methods. Results The FDR of SAM is second only to the 8 conservative methods, yet it detects more genes which are differentially expressed. Therefore the SAM approach may be more suitable for the purpose of microarray to select differentially expressed genes. Conclusion SAM is suitable for the purpose of microarray to screen the differentially expressed genes.
出处 《中国卫生统计》 CSCD 北大核心 2006年第5期417-420,共4页 Chinese Journal of Health Statistics
关键词 差异表达基因 模拟数据 FDR Differentially expressed genes, Simulated data, FDR
  • 相关文献

参考文献5

二级参考文献71

  • 1Cheung V G, Morley M, Aguilar F, et al. Making and reading microarrays. Nat Genet, 1999, 21:15-19.
  • 2Quackenbush J Computational genetics: computational analysis of microarray data. Nat Rev Genet, 2001, 2:418-427.
  • 3Raychaudhuri S, Sutphin P D, Chang J T, et al. Basic microarray analysis: grouping and feature reduction. Trends Biotechnol, 2001, 19(5): 189-193.
  • 4Fellenberg K, Hauser N C, Brors B, et al. Correspondence analysis applied to microarray data. Proc Natl Acad Sci USA,2001, 98(19): 10781-10786.
  • 5Kaminski N, Friedman N. Practical approaches to analyzing results of microarray experiments. Am J Respir Cell Mol Biol, 2002, 27(2): 125-132.
  • 6Schena M, Shalon D, Heller R, et al. Parallel human genome analysis: microarray-based expression monitoring of 1000 genes. Proc Natl Acad Sci USA, 1996, 93(20): 10614-10619.
  • 7Lee J H, Kaminski N, Dolganov G, et al. Interleukin-13 induces dramatically different transcriptional programs in three human airway cell types. Am J Respir Cell Mol Biol,2001, 25:474-485.
  • 8Alon U, Barkai N, Notterman D A, et al. Broad patterns of gene expression revealed by clustering analysis of tumor and normal colon tissues probed by oligonucleotide arrays. Proc Natl Acad Sci USA, 1999, 96:6745-6750.
  • 9Ben-Dor A, Shamir R, Yakhini Z. Clustering gene expression patterns. J Comput Biol, 1999, 6:281-297.
  • 10Bittner M, Meltzer P, Trent J. Data analysis and integration:of steps and arrows. Nature Genet, 1999, 22:213-215.

共引文献24

同被引文献91

引证文献7

二级引证文献17

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部