期刊文献+

基于Web数据挖掘的个性化信息智能Agent挖掘系统模型 被引量:2

a Model of Personality Information Intelligent Mining Based on Web Data Mining
下载PDF
导出
摘要 个性化智能挖掘是近几年出现的一个崭新的研究方向,它是人工智能与数据挖掘技术在Web或Internet环境下相互融合的产物。大部分个性化信息挖掘都只是建立在纯粹的Web数据挖掘之上,然而面对大部分的智能化技术的出现,面对用户能够快速准确地检索自己最想要的信息的需求,Web数据挖掘要进行相应的扩展,通过将Web数据挖掘技术和智能Agent技术相结合,从而满足用户的需求。本文主要提出两个模型:典型的个性化Web挖掘模型和个性化Agent智能挖掘模型。 Personality Intelligent Minning is a new research topic currently. It is a shirt-sleeve of one another on Web or Internet. Mlost personality information minning is built on sheer Web Data Minning. But facing the appearance of intelligentize technique and the requirement of clients retrieve most desirous information quickly and exactly,Web Data Minning should be extent.By conbining with Web Data Minning technique and intelligent Agent technique,it will satisfy requirements of clients.This paper focus on bringing forward to two models which are typical Personality Web Minning Model and Personality Agent Intelligent Minning Model.
作者 张莉
出处 《科技广场》 2006年第8期53-55,共3页 Science Mosaic
关键词 个性化 WEB数据挖掘 智能AGENT 检索 Personality Web Data Mining Intelligent Agent Retrieve
  • 相关文献

参考文献6

二级参考文献35

  • 1[1]Cooley R, Mobasher B, Srivastava J. Data preparation for mining world wide web browsing patterns. Journal of Knowledge and Information Systems, 1999 (1): 230-241
  • 2[2]Agrawal, Srikant R. Fast algorithms for mining association rules.In proceedings of the 20th VLDB conference, 1994: 487-499
  • 3[3]Karypis H P. Clustering based on association rule hypergraphs.In Proccedings of SIGMOD'97 Workshop on Research Issues in DMKD'97, 1997: 331-352
  • 4[4]Karypis H P. Hypergraph based clustering in high-dimensional data sets:a summary of results. IEEE Bulletin of Technical Committee on Data Engineering, 1998, (21)1: 105-140
  • 5[1]Srivastava J. Web usage mining: Discovery and application of usage patterns from web data[C]. SIGKDD Explorations, 2000.
  • 6[2]Barrett R, Maglio P P, Kellen D C. How to personalize the Web[C]. Proceedings of the Conference on Human Factors in Computing Systems (CHI'97), ACM Press, New York,1997.
  • 7[3]Rossi G, Schwabe D, Guimar ?鉫s R M. Designing personalized Web applications[C].10th WWW Conference, Hong Kong, 2001, ACM 1-58113-348-0/01/0005.
  • 8[4]Vander Mee D, Dutta K, Datta A, et al. Enabling scalable online personalization on the Web[C]. Proceedings of the 2nd ACM conference on Electronic commerce, 2000. 185-196.
  • 9[5]Sarukkai P R. Link prediction and path analysis using markov chains[C]. 9th WWW Conference, Amsterdam, 2000.
  • 10[6]Mobasher R, Cooley R, Srivastava J. Creating adaptive Web sites through usage-based clustering of URLs[C]. Procee-dings of the 1999 IEEE Knowledge and Data Engineering Exchange Workshop (KDEX'99), 1999.

共引文献93

同被引文献11

引证文献2

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部